Velocities of 3 particles of the solid, which don't lie on a single straight line, V1,V2,V3 are given (as vector-functions). Radius-vectors r1,r2 from third particle to first and second are given aswell. How could I find the angular velocity w of the solid?
I tried to solve this problem using Euler's theorem : V2=V3+[w×r2], V1=V3+[w×r1].
After this step I tried to consider different cases: if V1 is not collinear to V2 we could write w=k∗[(V2−V3)×(V1−V3)]. However, it doesn't really help. The second case is even more difficult to analyze.
Second attempt consisted in solving this system by multiplication (scalar product or vector work) equations by appropriate vectors. However, I didn't really succeed.
Answer
The algebra is not especially nice, but it is just algebra. This is rigid body rotation, taking point 3 as the origin of coordinates, so effectively r1=R1−R3,r2=R2−R3. We start as you suggested, and abbreviate v1=V1−V3,v2=V2−V3, so that \mathbf{v}_1 = \boldsymbol{\omega}\times\mathbf{r}_1, \qquad \mathbf{v}_2 = \boldsymbol{\omega}\times\mathbf{r}_2. Now since the three points are not collinear, we can let \boldsymbol{\omega} = a\,\mathbf{r}_1 + b\,\mathbf{r}_2 + c\, \mathbf{r}_1\times\mathbf{r}_2 but we must remember that \mathbf{r}_1 and \mathbf{r}_2 will not in general be orthogonal. We can obtain c directly, from either of the two equivalent equations \begin{align*} \mathbf{r}_2\cdot\mathbf{v}_1 &= \mathbf{r}_2\cdot\boldsymbol{\omega}\times\mathbf{r}_1 = \boldsymbol{\omega}\cdot\mathbf{r}_1\times\mathbf{r}_2 = c |\mathbf{r}_1\times\mathbf{r}_2|^2 \\ \mathbf{r}_1\cdot\mathbf{v}_2 &= \mathbf{r}_1\cdot\boldsymbol{\omega}\times\mathbf{r}_2 = -\boldsymbol{\omega}\cdot\mathbf{r}_1\times\mathbf{r}_2 = -c |\mathbf{r}_1\times\mathbf{r}_2|^2 \\ \Rightarrow\quad c&= \frac{\mathbf{r}_2\cdot\mathbf{v}_1}{|\mathbf{r}_1\times\mathbf{r}_2|^2} = -\frac{\mathbf{r}_1\cdot\mathbf{v}_2}{|\mathbf{r}_1\times\mathbf{r}_2|^2} \end{align*} where we took advantage of the properties of the scalar triple product.
The other coefficients come from scalar products with \mathbf{r}_1\times\mathbf{r}_2. We use the general identity (\mathbf{A}\times\mathbf{B})\cdot(\mathbf{C}\times\mathbf{D}) = (\mathbf{A}\cdot\mathbf{C})\,(\mathbf{B}\cdot\mathbf{D}) - (\mathbf{B}\cdot\mathbf{C})\,(\mathbf{A}\cdot\mathbf{D}) and a special case of this, which we use, is |\mathbf{r}_1\times\mathbf{r}_2|^2=|\mathbf{r}_1|^2|\mathbf{r}_2|^2-(\mathbf{r}_1\cdot\mathbf{r}_2)^2. \begin{align*} \mathbf{r}_1\times\mathbf{r}_2 \cdot \mathbf{v}_2 &= (\mathbf{r}_1\times\mathbf{r}_2 ) \cdot (\boldsymbol{\omega}\times\mathbf{r}_2) \\ &= \left( a|\mathbf{r}_1|^2 + b(\mathbf{r}_1\cdot\mathbf{r}_2) \right)\, |\mathbf{r}_2|^2- \left( a(\mathbf{r}_1\cdot\mathbf{r}_2) + b|\mathbf{r}_2|^2 \right)\, (\mathbf{r}_1\cdot\mathbf{r}_2) \\ &= a |\mathbf{r}_1\times\mathbf{r}_2|^2 \\ \Rightarrow\quad a&=\frac{\mathbf{r}_1\times\mathbf{r}_2 \cdot \mathbf{v}_2 }{|\mathbf{r}_1\times\mathbf{r}_2|^2} \\ \mathbf{r}_1\times\mathbf{r}_2 \cdot \mathbf{v}_1 &= (\mathbf{r}_1\times\mathbf{r}_2 ) \cdot (\boldsymbol{\omega}\times\mathbf{r}_1) \\ &= \left( a|\mathbf{r}_1|^2 + b(\mathbf{r}_1\cdot\mathbf{r}_2) \right)\,(\mathbf{r}_1\cdot\mathbf{r}_2) - \left( a(\mathbf{r}_1\cdot\mathbf{r}_2) + b|\mathbf{r}_2|^2 \right) \, |\mathbf{r}_1|^2 \\ &= -b |\mathbf{r}_1\times\mathbf{r}_2|^2 \\ \Rightarrow\quad b &=-\frac{\mathbf{r}_1\times\mathbf{r}_2 \cdot \mathbf{v}_1}{|\mathbf{r}_1\times\mathbf{r}_2|^2} \end{align*}
I hope I haven't made any slips, you should definitely check!
No comments:
Post a Comment