Wednesday, 8 March 2017

vector fields - Index Notation with Del Operators


I'm having trouble with some concepts of Index Notation. (Einstein notation)


If I take the divergence of curl of a vector, $\nabla \cdot (\nabla \times \vec V)$ first I do the parenthesis:



$\nabla_iV_j\epsilon_{ijk}\hat e_k$ and then I apply the outer $\nabla$...


and get: $\nabla_l(\nabla_iV_j\epsilon_{ijk}\hat e_k)\delta_{lk}$


I am not sure if I applied the outer $\nabla$ correctly. If I did do it correctly, however, what is my next step? I guess I just don't know the rules of index notation well enough. Can I apply the index of $\delta$ to the $\hat e$ inside the parenthesis? Or is that illegal?



Answer



First some notation


$$\nabla \times \vec B \rightarrow \epsilon_{ijk}\nabla_j B_k$$ $$\nabla \cdot \vec B \rightarrow \nabla_i B_i$$ $$\nabla B \rightarrow \nabla_i B$$


Now, to your problem,


$$\nabla \cdot(\nabla \times \vec V)$$


writing it in index notation


$$\nabla_i (\epsilon_{ijk}\nabla_j V_k)$$



Now, simply compute it, (remember the Levi-Civita is a constant)


$$\epsilon_{ijk} \nabla_i \nabla_j V_k$$


Here we have an interesting thing, the Levi-Civita is completely anti-symmetric on i and j and have another term $\nabla_i \nabla_j$ which is completely symmetric: it turns out to be zero.


$$\epsilon_{ijk} \nabla_i \nabla_j V_k = 0$$


Lets make the last step more clear. We can always say that $a = \frac{a+a}{2}$, so we have


$$\epsilon_{ijk} \nabla_i \nabla_j V_k = \frac{1}{2} \left[ \epsilon_{ijk} \nabla_i \nabla_j V_k + \epsilon_{ijk} \nabla_i \nabla_j V_k \right]$$


Now lets interchange in the second Levi-Civita the index $\epsilon_{ijk} = - \epsilon_{jik}$, so that


$$\epsilon_{ijk} \nabla_i \nabla_j V_k = \frac{1}{2} \left[ \epsilon_{ijk} \nabla_i \nabla_j V_k - \epsilon_{jik} \nabla_i \nabla_j V_k \right]$$


Now we can just rename the index $\epsilon_{jik} \nabla_i \nabla_j V_k = \epsilon_{ijk} \nabla_j \nabla_i V_k$ (no interchange was done here, just renamed).


$$\epsilon_{ijk} \nabla_i \nabla_j V_k = \frac{1}{2} \left[ \epsilon_{ijk} \nabla_i \nabla_j V_k - \epsilon_{ijk} \nabla_j \nabla_i V_k \right]$$



We can than put the Levi-Civita at evidency,


$$\epsilon_{ijk} \nabla_i \nabla_j V_k = \frac{\epsilon_{ijk}}{2} \left[ \nabla_i \nabla_j V_k - \nabla_j \nabla_i V_k \right]$$


And, because V_k is a good field, there must be no problem to interchange the derivatives $\nabla_j \nabla_i V_k = \nabla_i \nabla_j V_k$


$$\epsilon_{ijk} \nabla_i \nabla_j V_k = \frac{\epsilon_{ijk}}{2} \left[ \nabla_i \nabla_j V_k - \nabla_i \nabla_j V_k \right]$$


And, as you can see, what is between the parentheses is simply zero.


No comments:

Post a Comment