Wednesday, 16 May 2018

homework and exercises - How to get "complex exponential" form of wave equation out of "sinusoidal form"?


I am a novice on QM and until now i have allways been using sinusoidal form of wave equation: $$A = A_0 \sin(kx - \omega t)$$



Well in QM everyone uses complex exponential form of wave equation: $$A = A_0\, e^{i(kx - \omega t)}$$


QUESTION: How do i mathematically derive exponential equation out of sinusoidal one? Are there any caches? I did read Wikipedia article where there is no derivation.



Answer



You asked about the second equation. See below:


$e^{ix}{}= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \frac{(ix)^8}{8!} + \cdots \\[8pt] {}= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} - \frac{ix^7}{7!} + \frac{x^8}{8!} + \cdots \\[8pt] {}= \left( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots \right) + i\left( x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right) \\[8pt] {}= \cos x + i\sin x \ .$


To calculate the expansions I have used in the above equation, you need to understand the procedure for finding Taylor expansions of functions. This youtube video teaches the procedure: http://www.youtube.com/watch?v=GUtLtRDox3c


No comments:

Post a Comment