Apologies if this is a really basic question, but what is the physical interpretation of the Poisson bracket in classical mechanics? In particular, how should one interpret the relation between the canonical phase space coordinates, $$\lbrace q^{i}, p_{j} \rbrace_{PB}~=~\delta^{i}_{j} $$ I understand that there is a 1-to-1 correspondence between these and the commutation relations in quantum mechanics in the classical limit, but in classical mechanics all observables, such as position and momentum commute, so I'm confused as to how to interpret the above relation?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
I have searched for equations regarding craters and I came across two of them. The first one is from this NOAO website in the level two sec...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
Problem Statement: Imagine a spherical ball is dropped from a height $h$, into a liquid. What is the maximum average height of the displaced...
-
In most books (like Cardy's) relations between critical exponents and scaling dimensions are given, for example $$ \alpha = 2-d/y_t, \;\...
No comments:
Post a Comment