This question is an outgrowth of What is the difference between electric potential, potential difference (PD), voltage and electromotive force (EMF)? , where @sb1 mentioned Faraday's law. However, Faraday's law as part of Maxwell's equations cannot account for the voltage measured between the rim and the axis of a Faraday generator because $\frac {\partial B} {\partial t} = 0$. It would've been a different story if the derivative were $\frac {dB} {dt} $ but it isn't. A palliative solution to this problem is given by invoking the Lorentz force. However, Lorentz force cannot be derived from Maxwell's equation while it must be if we are to consider Maxwell's equations truly describing electromagnetic phenomena. As is known, according to the scientific method, one only experimental fact is needed to be at odds with a theory for the whole theory to collapse. How do you reconcile the scientific method with the above problem?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
Why can't we use fissions products for electricity production ? As far has I know fissions products from current nuclear power plants cr...
-
I have searched for equations regarding craters and I came across two of them. The first one is from this NOAO website in the level two sec...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
Problem Statement: Imagine a spherical ball is dropped from a height $h$, into a liquid. What is the maximum average height of the displaced...
-
In most books (like Cardy's) relations between critical exponents and scaling dimensions are given, for example $$ \alpha = 2-d/y_t, \;\...
No comments:
Post a Comment