Thursday, 3 April 2014

mathematics - Welcome to Oɴᴇderland




1 1
1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

         #1.   You are here




1111111111111111111111111111111
111 111
111 1111111111111111111 111111111111111111111111111
111 111 111 111 111
111 111 1111111 111 111 111111111111111 111

111 111 111 111 111 111 111 111
111 1111111 111 111 111 111 111 111 111
111 111 111 111 111 111 111
1111111111111111111 111 111111111111111 111 111
111 111 111
111111111111111111111111111111111111111 111
111 111
111 111111111111111111111111111111111111111
111 111
111 111 111111111111111

111 111 111 111
111 111 111 111 111
111 111 111 111
111 111111111111111 111
111 111
111111111111111111111111111

         #2.   Through the labyrinth we wind



1ooo11ooo1
111ooooo1 1oo111o
1 oo1111 1 1
o1 o1 1 1
o1 1 1 1
o1 1 1 1
1 1 1 1
1 1 11ooo1oo1o111oo
1ooo11o1 oooo1
o1 1111 ooo1111

1111 1111111
1 1111
1111
o1
o1
o1111 o1
oo1 o1 o1
o1 1111
o1 ooo1oo111o
1 ooo1 o1

1111 1
1

         #3.   A rose is a rose is a rose


1
1 1
1o1o1
1 1 1 1

1 1o1o1o1o1 1
1 1 1 1 1 1 1 1
1o1o1 1o1o1 1o1o1 1o1o1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1
1 1 1 1 1 1 1 1
1o1o1 1o1o1 1o1o1 1o1o1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1o1o1o1o1o1o1o1o1 1o1o1o1o1o1o1o1o1
1 1 1 1 1 1 1 1

1o1o1 1o1o1 1o1o1 1o1o1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1o1o1o1o1 1o1o1o1o1o1o1o1o1o1o1o1o1
1 1 1 1 1 1 1 1
1o1o1 1o1o1 1o1o1 1o1o1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1

         #4.   $\sf \small O \scriptsize NE$ders of the ancient world



Obviously (?) the $\sf\scriptsize ZERO$-and$\small/$or-$\sf\scriptsize ONE$ders here represent a pattern of mathematical constructs.



o?1?o?1?
1? o?
1?
o?
1?
o?

1?


         #5.What picture could be fifth, but not at other #s here?     Why?




1o111111ooooo
oooooo1o11111ooooo
oooooooooooo1o1111ooooo
oooooooooooooooooo1o111ooooo
oooooooooooooooooooooooo1o11ooooo
oooooooooooooooooooooooooooooo1o1ooooo

ooooooooooooooooooooooooooooooooooo11o1oooo
oooooooooooooooooooooooooooooooooooooooo111o1ooo
ooooooooooooooooooooooooooooooooooooooooooooo1111o1oo
oooooooooooooooooooooooooooooooooooooooooooooooooo11111o1o
ooooooooooooooooooooooooooooooooooooooooooooooooooooooo111111o1

         #6.   One for the road


The answer can be pictured in infinitely many ways. The ?-shaped placeholder presently at #5 is meant to be replaced. Only numbers composed of o zeros and$\small/$or 1 ones are pertinent. Two-dimensional shapes and surrounding words are just gratuitous embellishments. If you’re getting nowhere after considering all this, why not actually go nowhere, to $\sf \small N \scriptsize ONE$derland, for comparison?



Answer




In the $n$th picture, the strings are all



representations of the number $1$ where the base is one of the primitive $n$th roots of unity. (That is, solutions to $z^n=1$ that don't work for any smaller $n$.)



So any picture containing



111111



would fit in slot 5, but not any other.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...