Sunday, 21 June 2015

quantum mechanics - Feynman diagrams and Hartree-Fock


I am puzzled by some lines I read in Mattuck's book on Feynman diagrams in many-body problems ( http://www.amazon.com/Feynman-Diagrams-Many-Body-Problem-Physics/dp/0486670473 ) Page 21 (1.14) for those who have the book. Basically after representing the full propagator of an electron in an electron gas by expansion of the electron-electron interaction (not specified but QED I guess), it says: "this is the 'Hartree-Fock' approximation for the electron gas", which I still don't understand. The Hartree-Fock method for me is just an iterative tool to calculate the collective wave-function of self-interacting fermions satisfying the correct anti-symmetrized form. This statement is evasive to me, and I'd like to understand in which way it makes sense.



Answer



These Feynman diagrams can be summed by solving the Dyson-Schwinger equation $$ G = G_0 + G_0\Sigma G $$ This is a self-consistency equation for $G$. Now write $G_0$ and $G$ in terms of single particle wave functions, $$ G(x,x';\omega)=\sum_j \phi_j(x)\phi^*_j(x')\left[ \frac{\Theta(E_j-E_F)}{\omega-E_j+i\epsilon} +\frac{\Theta(E_F-E_j)}{\omega-E_j-i\epsilon} \right]. $$ Then the Dyson-Schwinger equation becomes a coupled set of equations for the eigenfunctions $\phi_j$ and the eigenvalues $E_j$. These are the standard Hartee-Fock equations. This is explained in some detail in many text books, for example Negele and Orland, or Fetter and Walecka.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...