Thursday 22 February 2018

quantum mechanics - Expectation value with plane waves



Hey guys Im a little confused with the concept of plane waves and how to perform an expectation value. Let me show you by an example. Suppose you have a wave function of the form


$\psi_{\boldsymbol{p}_{0}}(x)=f(p_{0})e^{\frac{i}{\hbar}\boldsymbol{p}_{0}\cdot\boldsymbol{x}}$


where $\boldsymbol{p}_{0}=(0,0,p_{0})$ and suppose you want to perform an expectation value of the position of the particle, that is


$=f^{2}(p_{0})\int\,d^{3}\boldsymbol{x}\,x\,e^{\frac{i}{\hbar}\boldsymbol{p}_{0}\cdot\boldsymbol{x}}e^{-\frac{i}{\hbar}\boldsymbol{p}_{0}\cdot\boldsymbol{x}}=f^{2}(p_{0})\int\,d^{3}\boldsymbol{x}\,x$



wich I think is nonsense. But if you define an arbitrary momentum vector $\boldsymbol{p}'=(p_{1}',p_{2}',p_{3}')$, and perform the transition probability


\begin{align} \left<\psi_{\boldsymbol{p}'}(\boldsymbol{x})|\,x\,|\psi_{\boldsymbol{p}_{0}}(\boldsymbol{x})\right>&=f(p')f(p_{0})\int\,d^{3}\boldsymbol{x}\,xe^{-\frac{i}{\hbar}(\boldsymbol{p}'-\boldsymbol{p}_{0})\cdot\boldsymbol{x}}=f(p')f(p_{0})\int\,d^{3}\boldsymbol{x}\left( i\hbar\frac{\partial}{\partial p_{x}'}\right)e^{-\frac{i}{\hbar}(\boldsymbol{p}'-\boldsymbol{p}_{0})\cdot\boldsymbol{x}}= \\ &=i\hbar f(p')f(p_{0})\frac{\partial}{\partial p_{x}'}\delta^{3}(\boldsymbol{p}'-\boldsymbol{p}_{0})=-i\hbar\delta^{3}(\boldsymbol{p}'-\boldsymbol{p}_{0})\frac{\partial}{\partial p_{x}'}\left( f(p')\right)f(p_{0}) \end{align}


where I made use of the property $f(x)\delta'(x)=-f'(x)\delta(x)$. So now with my new expresion I have a meaningful result and I can evaluate for $\boldsymbol{p}'=\boldsymbol{p}_{0}$ and get a result that I wasnt able to get with the first method. What I'm doing wrong or the the second way is the correct way to do it? Thanks!




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...