Saturday, 27 April 2019

condensed matter - A physical understanding of fractionalization


all! Is there a physical understanding of fractionalization in condensed matter physics? The textbook approach is theoretical, not physical. I'm thinking of spin-charge separation for electrons, the fractional quantum hall effect, and things like that. The theoretical approach is to introduce an auxiliary gauge field with no kinetic term at the bare level so that it is apparently confining and nondynamical at the bare level, but somehow, dynamics intervenes, and it becomes deconfining, and somehow, there's some mixture between the emergent gauge symmetry and the original symmetries, and somehow, fractionalization comes in in the diagonalization.


What is the physical interpretation without introducing theoretical auxiliary gauge symmetries right from the onset?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...