Monday, 17 February 2020

condensed matter - Physical Meaning of the Gutzwiller Constraints


I have a doubt on the constraints for the expecation values obtained by Bünemann et all.


First i want to introduce my notation


To analytically solve a tight-binding model, ˆH=i,j,σ,σtσ,σi,jˆci;σˆcj;σ+iˆHi,at

we can use a variational method made by Gutzwiller 1 , 2. He introduces this wave function, in the case of a single band system |ΨG=i[1+(g1)ˆDi]|Φ0
where g is a real number between 0 and 1 that plays the role of a variational parameter, |Φ0 is a Slater determinat on which we can apply Wick's theorem and ˆDi=ˆni,ˆni, is the double occupation operator.


Here Bunemann et all. extend (2) to a multiband system, and it becomes |ΨG=i[1+Γ(λi,Γ1)ˆmi,Γ]|Φ0

where ˆmi,Γ=|ΓiΓ|i=σΓˆni,σσ¯Γ(1ˆni,σ)
while λi,Γ plays now the role of variational parameters. Γ is the atomic eignestate of the atomic Hamiltonian.


They realize that in the limit of infinite coordination number, average values on the Gutzwiller wavefunction can be computed exactly if the following constraints are satised Ψ0|ˆPiˆPi|Ψ0=1Ψ0|ˆPiˆPiˆci,αˆci,β|Ψ0=Ψ0|ˆci,αˆci,β|Ψ0



It is not clear the physical meaning of these constraints, given also Here by Metzner.


Mathematically, applying Wick's theorem to (4)


Ψ0|ˆPiˆPiˆci,αˆci,β|Ψ0=Ψ0|ˆPiˆPi|Ψ0Ψ0|ˆci,αˆci,β|Ψ0+Ψ0|ˆPiˆPiˆci,αˆci,β|Ψ0contractions

assuming that Ψ0 is normalized, we have that the sum of all Wick's contractions of ˆci,αˆci,β with ˆPiˆPi vanishes




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...