Monday, 16 February 2015

momentum - How can I solve this quantum mechanical "paradox"?


Let a (free) particle move in $[0,a]$ with cyclic boundary condition $\psi(0)=\psi(a)$. The solution of the Schrödinger-equation can be put in the form of a plane wave. In this state the standard deviation of momentum is $0$, but $\sigma_x$ must be finite. So we find that $\sigma_x\sigma_p=0$. Is something wrong with the uncertainty principle?



Answer



This is what happens if one cares not for the subtlety that quantum mechanical operators are typically only defined on subspaces of the full Hilbert space.


Let's set $a=1$ for convenience. The operator $p =-\mathrm{i}\hbar\partial_x$ acting on wavefunctions with periodic boundary conditions defined on $D(p) = \{\psi\in L^2([0,1])\mid \psi(0)=\psi(1)\land \psi'\in L^2([0,1])\}$ is self-adjoint, that is, on the domain of definition of $p$, we have $p=p^\dagger$, and $p^\dagger$ admits the same domain of definition. The self-adjointness of $p$ follows from the periodic boundary conditions killing the surface terms that appear in the $L^2$ inner product $$\langle \phi,p\psi\rangle - \langle p^\dagger \phi,\psi\rangle = \int\overline{\phi(x)}\mathrm{i}\hbar\partial_x\psi(x) - \overline{\mathrm{i}\hbar\partial_x\phi(x)}\psi(x) = 0$$ for every $\psi\in D(p)$ and every $\phi\in D(p^\dagger) = D(p)$, but not for $\phi$ with $\phi(0)\neq\phi(1)$.


Now, for the question of the commutator: the multplication operator $x$ is defined on the entire Hilbert space, since for $\psi\in L^2([0,1])$ $x\psi$ is also square-integrable. For the product of two operators $A,B$, we have the rule $$ D(AB) = \{\psi\in D(B)\mid B\psi\in D(A)\}$$ and $$ D(A+B) = D(A)\cap D(B)$$ so we obtain \begin{align} D(px) & = \{\psi\in L^2([0,1])\mid x\psi\in D(p)\} \\ D(xp) & = D(p) \end{align} and $x\psi\in D(p)$ means $0\cdot \psi(0) = 1\cdot\psi(1)$, that is, $\psi(1) = 0$. Hence we have $$ D(px) = \{\psi\in L^2([0,1])\mid \psi'\in L^2([0,1]) \land \psi(1) = 0\}$$ and finally $$ D([x,p]) = D(xp)\cap D(px) = \{\psi\in L^2([0,1])\mid \psi'\in L^2([0,1])\land \psi(0)=\psi(1) = 0\}$$ meaning the plane waves $\psi_{p_0}$ do not belong to the domain of definition of the commutator $[x,p]$ and you cannot apply the naive uncertainty principle to them. However, for self-adjoint operators $A,B$, you may rewrite the uncertainty principle as $$ \sigma_\psi(A)\sigma_\psi(B)\geq \frac{1}{2} \lvert \langle \psi,\mathrm{i}[A,B]\rangle\psi\rvert = \frac{1}{2}\lvert\mathrm{i}\left(\langle A\psi,B\psi\rangle - \langle B\psi,A\psi\rangle\right)\rvert$$ where the r.h.s. and l.h.s. are now both defined on $D(A)\cap D(B)$. Applying this version to the plane waves yields no contradiction.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...