Monday, 1 June 2015

experimental physics - Particle Detector: dE/dX and momentum resolution



I'm reading an article describing a particle detector. I did not understand the following things in it.
"The drift chamber (of this detector) was described as having a dE/dX resolution that is better than 6%. & a momentum resolution which is better than 0.5% for charged tracks with a momentum of 1 GeV/C."


Could anyone please explain to me in simple terms what they mean by these two sentences?



Answer



$dE/dx$ is the rate of energy loss (over distance) from a charged particle in some material. If you measure $dE/dx$ as a function of momentum ($p$), this can be used as a form of particle identification, because different types of particles follow different curves in this distribution.


dE/dx vs p


Resolution of some variable $q$ is usually quoted as $\frac{\Delta q}{q}$ where $\Delta q$ is e.g. the width of a Gaussian distribution of the deviation between the true and measured quantity (taken from simulation or otherwise from some calibration or other).


So your sentences evaluate to:


$$\frac{\Delta (dE/dx)}{dE/dx}<0.06$$


and



$$\frac{\Delta p}{p}<0.005 \; \left(\text{for } p>1\text{ GeV}\right)$$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...