I read there are two definitions about $S$-operator:
The first one (e.g (8.49) in Greiner's Field Quantization) is: $$S_{fi}\equiv \langle \Psi_p^{-}| \Psi_k^{+}\rangle$$ where $|\Psi_p^{-}\rangle$ is a state in Heisenberg picture which is $| p \rangle$ at $t=+\infty$ when you calculate the $|\Psi_p^{-}\rangle$ in Schrodinger picture , called out state. $| \Psi_k^{+}\rangle$ is a state in Heisenberg picture which is $| k \rangle$ at $t=-\infty$, called in state.
So$$S_{fi}\equiv \langle \Psi_p^{-}| \Psi_k^{+}\rangle= \langle p|(\Omega_-)^\dagger\Omega_+|k \rangle$$
In this case the S-operator $\hat S=(\Omega_-)^\dagger\Omega_+$, where Møller operator $$\Omega_+ = \lim_{t\rightarrow -\infty} U^\dagger (t) U_0(t)$$ $$\Omega_- = \lim_{t\rightarrow +\infty} U^\dagger (t) U_0(t)$$ So $$S=U_I(\infty,-\infty)$$
Another definition (e.g (9.14) (9.17) (9.99) in Greiner's Field Quantization) is : $$S_{fi}\equiv \langle \Psi_p^{-}| \Psi_k^{+}\rangle\equiv\langle \Psi_p^{-}| \hat S ^\prime |\Psi_k^{-}\rangle=\langle \Psi_p^{+}| \hat S ^\prime |\Psi_k^{+}\rangle$$ where S-operator $\hat S ^\prime |\Psi_p^{-}\rangle =|\Psi_p^{+}\rangle$ that is $\hat S^\prime = \Omega_+(\Omega_-)^\dagger$.
It seems that these two definitions are differnt, but many textbook can derive the same dyson formula for these two S-operators. https://en.wikipedia.org/wiki/S-matrix#The_S-matrix
How to prove: $$\Omega_+(\Omega_-)^\dagger= e^{i \alpha}(\Omega_-)^\dagger\Omega_+$$
related to this question: There are two definitions of S operator (or S matrix) in quantum field theory. Are they equivalent?
No comments:
Post a Comment