Wednesday, 16 May 2018

homework and exercises - How to get "complex exponential" form of wave equation out of "sinusoidal form"?


I am a novice on QM and until now i have allways been using sinusoidal form of wave equation: $$A = A_0 \sin(kx - \omega t)$$



Well in QM everyone uses complex exponential form of wave equation: $$A = A_0\, e^{i(kx - \omega t)}$$


QUESTION: How do i mathematically derive exponential equation out of sinusoidal one? Are there any caches? I did read Wikipedia article where there is no derivation.



Answer



You asked about the second equation. See below:


$e^{ix}{}= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \frac{(ix)^8}{8!} + \cdots \\[8pt] {}= 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} - \frac{ix^7}{7!} + \frac{x^8}{8!} + \cdots \\[8pt] {}= \left( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots \right) + i\left( x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right) \\[8pt] {}= \cos x + i\sin x \ .$


To calculate the expansions I have used in the above equation, you need to understand the procedure for finding Taylor expansions of functions. This youtube video teaches the procedure: http://www.youtube.com/watch?v=GUtLtRDox3c


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...