We know that work done ON the spring is given by the integral ∫kxdx=12kx2 if we start from x=0 .But what if I apply more force on the spring.Wouldn't I be doing more work on it? Why isn't this integral encapsulating this idea? Why should I assume that I just applied a little more force than the spring to move it? Any help will be seriously appreciated.
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form ψ=Ae−βr with $A = \frac{\bet...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
The gravitation formula says F=Gm1m2r2, so if the mass of a bob increases then the torque on it should also increase...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Small vessels generally lean into a turn, whereas big vessels lean out. Why do ships lean to the outside, but boats lean to the inside of a ...
No comments:
Post a Comment