In the Reissner-Nordstrom metric $$ \mathrm ds^2 = \left(1 - \frac{2GM}{r} + \frac{GQ^2}{4\pi\epsilon_0 r^2}\right)~\mathrm dt^2 - \left(1 - \frac{2GM}{r} + \frac{GQ^2}{4\pi\epsilon_0 r^2}\right)^{-1} ~\mathrm dr^2 - r^2~\mathrm d\Omega^2$$ when we consider the case with $$ \frac{2GM}{r} = \frac{GQ^2}{4\pi\epsilon_0 r^2} \;,$$
what is the meaning of this case?
Does Electromagnetic force counterbalance the gravitational force?
No comments:
Post a Comment