We know the Lagrange equations are: $$\frac{\partial \mathcal{L}}{\partial q_i}-\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q_i}}\right)=0.$$ Then, when we add friction in there, we rewrite it in terms of the Rayleigh dissipation function as $$\frac{\partial \mathcal{L}}{\partial q_i}-\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{q_i}}\right)=\frac{\partial \mathcal{F}}{\partial \dot{q_i}}.$$ However, this is assuming that you can write the friction force as $F_f=-k\dot{q_i}$. How would you do it for a case where the friction force is not proportional to velocity? For example, in the case of a block sliding on a flat surface the friction would be $F_f=-m\ddot{q}$, which is proportional to the acceleration not the velocity.
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form $$ \psi = A e^{-\beta r} $$ with $A = \frac{\bet...
-
I stand up and I look at two parallel railroad tracks. I find that converge away from me. Why? Can someone explain me why parallel lines s...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Sorry if this question is a bit broad but I can't find any info on this by just searching. The equation q = neAL where L is the length o...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
No comments:
Post a Comment