Monday, 9 February 2015

Statistics of bound states of anyons with order pq



Anyons with fractional statistics are possible in 2 spatial dimensions, as shown by Wilczek. Suppose we have two identical anyons of spin 1/pq, where p and q are integers more than 1. Then, interchanging both of them will pick up a phase factor of $e^{-2\pi i/pq}$, right? Suppose there is a bound state of p such anyons. Then, they've got to have a spin of 1/q. However, interchanging two such identical bound states will pick up a phase factor of $e^{-2\pi i p/q}$ instead of $e^{-2\pi i/q}$?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...