Friday, 27 May 2016

rotational kinematics - Proof of constant angular velocity in rigid body motion


I'm studying rigid body motion on Landau but I'm having troubles to understand this proof of the fact that the angular velocity $\vec{\Omega}$ is constant for a rigid body.


enter image description here



My doubt is about the two last equations in the last two lines of the text. If I use the two I get


$\vec{V'}=\vec{V}+(\vec{\Omega}-\vec{\Omega'})\times \vec{r'} +\vec{\Omega} \times\vec{a}$


How are (31.3) derived from this?



Answer



You have


$$ \boldsymbol{v} = \boldsymbol{V'} + \boldsymbol{\Omega'} \times \boldsymbol{r'} $$


and


$$ \boldsymbol{v} = \boldsymbol{V} + \boldsymbol{\Omega} \times (\boldsymbol{r'}+\boldsymbol{a}) $$


You collect the $\boldsymbol{r'}$ terms


$$ \boldsymbol{v} = \boldsymbol{V'} + \boldsymbol{\Omega'} \times \boldsymbol{r'} = \left( \boldsymbol{V}+ \boldsymbol{\Omega} \times \boldsymbol{a} \right) + \left( \boldsymbol{\Omega} \times \boldsymbol{r'} \right) $$



which is solved uniquely when


$$ \begin{align} \boldsymbol{\Omega'} & = \boldsymbol{\Omega} \\ \boldsymbol{V'} &= \boldsymbol{V}+ \boldsymbol{\Omega} \times \boldsymbol{a} \end{align} $$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...