In the light clock experiment of the time dilation theory, why does the light travel in triangles for the light clock in motion when the outside observer is viewing it. I'm not able to understand why does the light travel a longer distance for the light clock in motion as compared to the stationery light clock. The distance between the mirrors in both the light clock is the same. The only difference is that one is in motion and the other is not. If the distance between the mirrors in both the light clocks is the same, then why does light have to travel in triangles for the light clock in motion when the outside observer is viewing it. Why can't it travel straight as it does in the stationery light clock. Please explain. I'm unable to understand the concept of time dilation.
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form $$ \psi = A e^{-\beta r} $$ with $A = \frac{\bet...
-
I stand up and I look at two parallel railroad tracks. I find that converge away from me. Why? Can someone explain me why parallel lines s...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Sorry if this question is a bit broad but I can't find any info on this by just searching. The equation q = neAL where L is the length o...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
No comments:
Post a Comment