Saturday, 29 July 2017

optics - Wavelength-dependent refractive index



I read in a book about optical fibers that the different spectral components of a light pulse transmitted in the fiber propagate with different velocities due to a wavelength dependent refractive index. Can someone explain that? Why is that silica refractive index depends on the wavelength/frequency of the wave?



Answer



The fundamental reason for the wavelength dependance of refractive index ($n$), in fact the fundamental description of refraction itself, is the domain of quantum field theory and is beyond my understanding. Hopefully somebody else can provide an answer on that subject.


However, I can state that it isn't just silica that has a wavelength dependent $n$. In fact, every material has some wavelength dependence, and this property is called dispersion. In optical materials, the dispersion curve is very well approximated by the Sellmeier Equation: $$ n^2(\lambda) = 1 + \sum_k \frac{B_k \lambda^2}{\lambda^2 - C_k} $$


usually taken to $k=3$, where $B_k$ and $C_k$ are measured experimentally. As far as I know this equation is not derived from theory; it is completely empirical.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...