Tuesday, 25 July 2017

quantum mechanics - Why does $ell=0$ correspond to spherically symmetric solutions for the spherical harmonics?


In quantum mechanics why do states with $\ell=0$ in the Hydrogen atom correspond to spherically symmetric spherical harmonics?



Answer



One way to understand it is to recognize that for the spherical harmonic $|l,m\rangle$ with $l=0$ (and obviously $m=0$), we have $\hat L_i|0,0\rangle=0$, where $\hat L_i$ is the angular momentum operator in the direction $i=x,y,z$. It is obvious for $\hat L_z$, which eigenvalue is $m=0$, and can be verified for the other two.


Then, the rotation operator $\hat R(\theta)$ around a direction $\vec n$ with angle $\theta$ is given by $$\hat R(\theta)=\exp(i\theta \,\vec n . \vec{\hat L} )$$ from which we clearly see that the state $|0,0\rangle$ is invariant for all rotations : $\hat R(\theta)|0,0\rangle=|0,0\rangle$ and is thus spherically symmetric.



In this formulation, you see that it is the only state like that. You can also show that the state $|l,0\rangle$ is axially symmetric (along $z$), etc. See for instance this nice picture :enter image description here


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...