I'm asked to show that $$\frac{d(\hat{A}\hat{B})}{d\lambda} ~=~ \frac{d\hat{A}}{d\lambda}\hat{B} + \hat{A}\frac{d\hat{b}}{d\lambda}$$ With $\lambda$ a continuous parameter. Should I use the definition $$\frac{d\hat{A}}{d\lambda} ~=~ \lim_{\epsilon \to 0} \frac{\hat{A}(\lambda + \epsilon) - \hat{A}(\lambda)}{\epsilon}$$ applied to $\hat{A}\hat{B}$ like $$\frac{d(\hat{A}\hat{B})}{d\lambda} ~=~ \lim_{\epsilon \to 0} \frac{\hat{A}(\lambda + \epsilon)\hat{B}(\lambda + \epsilon) - \hat{A}(\lambda)\hat{B}(\lambda)}{\epsilon}$$ and do some algebra to get the RHS of the first equation, or I'm missing something?
Another interesting derivative to pay attention to is: $$\frac{d}{d\lambda}\exp(\hat{A}(\lambda) )~?$$
Answer
$$A(\lambda+\epsilon)B(\lambda+\epsilon) = (A(\lambda) + \epsilon \dot{A} )(B(\lambda) +\epsilon \dot B ) = A(\lambda)B(\lambda) + \epsilon(\dot AB+A\dot B) + o(\epsilon^2)$$
No comments:
Post a Comment