I'm asked to show that d(ˆAˆB)dλ = dˆAdλˆB+ˆAdˆbdλ With λ a continuous parameter. Should I use the definition dˆAdλ = lim applied to \hat{A}\hat{B} like \frac{d(\hat{A}\hat{B})}{d\lambda} ~=~ \lim_{\epsilon \to 0} \frac{\hat{A}(\lambda + \epsilon)\hat{B}(\lambda + \epsilon) - \hat{A}(\lambda)\hat{B}(\lambda)}{\epsilon} and do some algebra to get the RHS of the first equation, or I'm missing something?
Another interesting derivative to pay attention to is: \frac{d}{d\lambda}\exp(\hat{A}(\lambda) )~?
Answer
A(\lambda+\epsilon)B(\lambda+\epsilon) = (A(\lambda) + \epsilon \dot{A} )(B(\lambda) +\epsilon \dot B ) = A(\lambda)B(\lambda) + \epsilon(\dot AB+A\dot B) + o(\epsilon^2)
No comments:
Post a Comment