Tuesday, 28 November 2017

quantum field theory - Two math methods apply the same loop integral lead different results! Why?


I tried to adopt the cut-off regulator to calculate a simple one-loop Feynman diagram in $\phi^4$-theory with two different math tricks. But in the end, I got two different results and was wondering if there is a reasonable explanation.



The integral I'm considering is the following $$ I=\int^\Lambda\frac{d^4 k}{(2\pi)^4}\frac{i}{k^2-m^2+i\epsilon} \qquad\text{where}\qquad \eta_{\mu\nu}=\text{diag}(-1,1,1,1) $$ $\Lambda$ is the cu-off energy scale and $\epsilon>0$. Then I do the calculations.


Method #1 - Residue Theorem:


Since $$ I=i\int\frac{d^3\vec{k}}{(2\pi)^3}\int_{-\infty}^{+\infty}\frac{dk^0}{2\pi}\left[\frac{(2k^0)^{-1}}{k^0+z_0}+\frac{(2k^0)^{-1}}{k^0-z_0}\right] \qquad\text{where}\qquad z_0=\sqrt{|\vec{k}|^2+m^2}-i\epsilon $$ choosing the upper contour in $k^0$-complex plane which encloses the pole, $-z_0$, we have $$ \begin{align} I &= \int\frac{d^3\vec{k}}{(2\pi)^3}\frac{1}{2\pi i}\oint dk^0\frac{(-2k^0)^{-1}}{k^0+z_0}\\ &= \frac{1}{2}\int\frac{d^3\vec{k}}{(2\pi)^3}\frac{1}{\sqrt{k^2+m^2}}\\ &= \frac{1}{4\pi^2}\int_0^\Lambda \frac{k^2dk}{\sqrt{k^2+m^2}}\\ &= \frac{1}{8\pi^2}\left[\Lambda^2\sqrt{1+\frac{m^2}{\Lambda^2}}-m^2\ln\left(\frac{\Lambda}{m}\bigg)-m^2\ln\bigg(1+\sqrt{1+\frac{m^2}{\Lambda^2}}\right)\right]\\ & \approx \frac{1}{8\pi^2}\left[\Lambda^2-m^2\ln\left(\frac{\Lambda}{m}\right)-m^2\ln2\right] \end{align} $$


Method #2 - Wick Rotation:


Drawing the poles, $-z_0, z_0$, one finds the integration contour can be rotated anticlockwise so that, $$ \begin{align} I &= i\int\frac{d^3\vec{k}}{(2\pi)^3}\int_{-i\infty}^{+i\infty}\frac{dk^0}{2\pi}\frac{1}{k^2-m^2+i\epsilon}\\ &= -i\int\frac{d^3\vec{k}}{(2\pi)^3}\int_{-\infty}^{+\infty}\frac{idk_4}{2\pi}\frac{1}{k^2_E+m^2} \end{align} $$ where $k_4=-ik^0$ and $k_E^2=-k^2$, which are $4d$ Euclidean variables. So we have $$ \begin{align} I&=\int\frac{d^4k_E}{(2\pi)^4}\frac{1}{k^2_E+m^2}\\ &=\frac{1}{16\pi^2}\int_0^{\Lambda^2}\frac{k_E^2 d(k_E^2)}{k^2_E+m^2}\\ &=\frac{1}{8\pi^2}\left[\frac{\Lambda^2}{2}-m^2\ln\left(\frac{\Lambda}{m}\right)-\frac{m^2}{2}\ln\left(1+\frac{m^2}{\Lambda^2}\right)\right] \end{align} $$ Comparing the results obtained from the above two methods, we will find only the $\ln\Lambda$ dependent parts are the same; Other two parts ($\Lambda^2$-dependence and finite piece) are different. Since I use the same regulator, it's a bit wired to me how could the math tricks affect the results.



Answer



I don't think it is exactly the same regulator: In the first method, you integrate $\int_{-\infty}^\infty dk^0 \int^\Lambda d^3k$, but in the second calculation you integrate $\int^\Lambda d^4 k_E$.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...