Let \mathscr{B} be a space of physics we have and \mathscr{T} be the duration. Let \mathscr{L} be a lagrangian density of the field such that the action is a functional of \phi:\mathbb{R}^4\rightarrow\mathbb{R}: S=\int_{\mathscr{B} \times\mathscr{T}}d^4x\mathscr{L}(\phi(t,\vec{x}),\partial_\mu\phi(t,\vec{x})).\tag{1}
We can then derive the equations of motion: \frac{\delta S}{\delta \phi}=0.\tag{2}
Otherwise we can define the hamiltonian density \mathscr{H}=\pi\dot\phi-\mathscr{L}=\mathscr{H}(\pi,\phi,\partial_i\phi)\tag{3} whereas \pi=\frac{\partial\mathscr{L}}{\partial\dot\phi}\tag{4} and i=1.2.3. Then the hamiltonian is a functional of (\mathbb{R}^3\rightarrow\mathbb{R}):
H(t)=\int_\mathscr{B} d^3x\mathscr{H}.\tag{5} Let \phi(t) and \pi(t) be 2 functions \mathbb{R}^3\rightarrow \mathbb{R}. We define the Poisson bracket for 2 functionals A[\phi,\pi] and B[\phi,\pi]: \{A,B\}=\frac{\delta A}{\delta\pi}\frac{\delta B}{\delta\phi}-\frac{\delta A}{\delta\phi}\frac{\delta B}{\delta\pi}\tag{6} and we have the canonical relation (for t,\vec{x},\vec{y} fixed): \{\pi(t,\vec{x}),\phi(t,\vec{y})\}=\delta^{(3)}(\vec{x}-\vec{y}).\tag{7}
How can we show that the equation of motions is now
\dot\pi=\{H,\pi\};\dot\phi=\{H,\phi\}~?\tag{8}
First, note that the EOM are the Euler-Lagrange equations:
\frac{\delta S}{\delta \phi}=\partial_\mu\left(\frac{\partial \mathscr L}{\partial\phi_{,\mu}}\right)-\frac{\partial \mathscr L}{\partial \phi}=\dot\pi+\partial_i\left(\frac{\partial \mathscr L}{\partial\phi_{,i}}\right)-\frac{\partial \mathscr L}{\partial \phi} where I isolated the \mu=0 term, and used the definition of \pi.
Next, use \mathscr L=\pi\dot\phi-\mathscr H: \frac{\delta S}{\delta \phi}=\dot\pi+\partial_i\left(\frac{\partial \mathscr L}{\partial\phi_{,i}}\right)-\frac{\partial \mathscr L}{\partial \phi}=\dot\pi-\partial_i\left(\frac{\partial \mathscr H}{\partial\phi_{,i}}\right)+\frac{\partial \mathscr H}{\partial \phi}=\dot\pi+\frac{\delta H}{\delta \phi} because \pi and \dot\phi are not functions of \phi.
Thus, we get \dot\pi=-\frac{\delta H}{\delta\phi}=\{H,\pi\}.
The other relation is easier: \{H,\phi\}=\frac{\delta \mathscr H}{\delta \pi} Next, use \mathscr H=\pi\dot\phi-\mathscr L: \{H,\phi\}=\frac{\delta \mathscr H}{\delta \pi}=\dot\phi because \mathscr L is not a function of \pi.
ADDENDUM
Let f(\phi,\pi) and g(\phi,\pi) be two function on "Phase space". Then, by definition, \{f(\boldsymbol x),g(\boldsymbol y)\}\equiv\int\mathrm d\boldsymbol z\ \frac{\delta f(\boldsymbol x)}{\delta \phi(\boldsymbol z)}\frac{\delta g(\boldsymbol y)}{\delta \pi(\boldsymbol z)}-\frac{\delta g(\boldsymbol y)}{\delta \phi(\boldsymbol z)}\frac{\delta f(\boldsymbol x)}{\delta \pi(\boldsymbol z)} where everything is evaluated at the same time t (not writen for clarity). This means that \{H(t),\pi(t,\boldsymbol x)\}=\int\mathrm d\boldsymbol z\ \frac{\delta H(t)}{\delta \phi(\boldsymbol z)}\frac{\delta \pi(\boldsymbol x)}{\delta \pi(\boldsymbol z)}-\frac{\delta \pi(\boldsymbol x)}{\delta \phi(\boldsymbol z)}\frac{\delta H(t)}{\delta \pi(\boldsymbol z)}=\int\mathrm d\boldsymbol z\ \frac{\delta H(t)}{\delta \phi(\boldsymbol z)}\delta(\boldsymbol x-\boldsymbol z) which equals \frac{\delta H}{\delta \phi}, as expected.
ADDENDUM II
Proof of \frac{\delta H}{\delta \phi}=\frac{\partial \mathscr H}{\partial \phi}-\partial_i\left(\frac{\partial\mathscr H}{\partial\phi_{,i}}\right):
The dynamical variables of the Lagrangian are \phi and \partial_\mu\phi. In the Hamiltonian formulation, we change \partial_0\phi\leftrightarrow\pi, so that the dynamical variables of the Hamiltonian are \phi,\,\partial_i\phi and \pi.
With this in mind, the Hamiltonian is, by definition, H=\int\mathrm d\boldsymbol x\ \mathscr H(\phi(\boldsymbol x),\phi_{,i}(\boldsymbol x),\pi(\boldsymbol x))
Therefore, \delta H=\int\mathrm d\boldsymbol x\ \delta\mathscr H(\phi(\boldsymbol x),\phi_{,i}(\boldsymbol x),\pi(\boldsymbol x)) where \delta\mathscr H(\phi,\phi_{,i},\pi)=\frac{\partial \mathscr H}{\partial \phi}\delta\phi+\frac{\partial \mathscr H}{\partial \phi_{,i}}\delta\phi_{,i}+\frac{\partial \mathscr H}{\partial\pi}\delta\pi
Next, as we want \frac{\delta H}{\delta \phi}, we want to leave \pi unchanged, so \delta\pi=0 (this is analogous to ordinary partial derivatives: when you calculate \frac{\partial f(x,y)}{\partial x} you want to make a small displacement of x, while leaving y unchanged)\phantom{}^1.
Anyway, in the integral over \mathrm d\boldsymbol x, we can integrate by parts the \delta \phi_{,i}=\partial_i\delta \phi to make the derivative act on \frac{\partial\mathscr H}{\partial\phi_{,i}}:
\delta\mathscr H(\phi,\phi_{,i},\pi)=\frac{\partial \mathscr H}{\partial \phi}\delta\phi-\partial_i\left(\frac{\partial \mathscr H}{\partial \phi_{,i}}\right)\delta\phi+\text{surface terms}
Finally, back to H: \delta H=\int\mathrm d\boldsymbol x\ \left(\frac{\partial \mathscr H}{\partial \phi}-\partial_i\left(\frac{\partial \mathscr H}{\partial \phi_{,i}}\right)\right)\delta\phi where I assumed that surface terms dont contribute. The expression in the parentheses is, by definition, the functional derivative of H w.r.t. \phi.
\phantom{}^1: If we took \delta\pi\neq 0 and \delta\phi=0, we would get \frac{\delta H}{\delta \pi} instead. All this is possible because the system is unconstrained, which is not true in some theories (such as the Dirac Lagrangian); in these cases, you can't use Poisson brackets, but Dirac brackets instead.