Sunday, 30 December 2018

homework and exercises - Field theory: equivalence between Hamiltonian and Lagrangian formulation


Let $\mathscr{B}$ be a space of physics we have and $\mathscr{T}$ be the duration. Let $\mathscr{L}$ be a lagrangian density of the field such that the action is a functional of $\phi:\mathbb{R}^4\rightarrow\mathbb{R}$: $$S=\int_{\mathscr{B} \times\mathscr{T}}d^4x\mathscr{L}(\phi(t,\vec{x}),\partial_\mu\phi(t,\vec{x})).\tag{1}$$


We can then derive the equations of motion: $$\frac{\delta S}{\delta \phi}=0.\tag{2}$$


Otherwise we can define the hamiltonian density $$\mathscr{H}=\pi\dot\phi-\mathscr{L}=\mathscr{H}(\pi,\phi,\partial_i\phi)\tag{3}$$ whereas $$\pi=\frac{\partial\mathscr{L}}{\partial\dot\phi}\tag{4}$$ and $i=1.2.3$. Then the hamiltonian is a functional of $(\mathbb{R}^3\rightarrow\mathbb{R})$:


$$H(t)=\int_\mathscr{B} d^3x\mathscr{H}.\tag{5}$$ Let $\phi(t)$ and $\pi(t)$ be 2 functions $\mathbb{R}^3\rightarrow \mathbb{R}$. We define the Poisson bracket for 2 functionals $A[\phi,\pi]$ and $B[\phi,\pi]$: $$\{A,B\}=\frac{\delta A}{\delta\pi}\frac{\delta B}{\delta\phi}-\frac{\delta A}{\delta\phi}\frac{\delta B}{\delta\pi}\tag{6}$$ and we have the canonical relation (for $t,\vec{x},\vec{y}$ fixed): $$\{\pi(t,\vec{x}),\phi(t,\vec{y})\}=\delta^{(3)}(\vec{x}-\vec{y}).\tag{7}$$


How can we show that the equation of motions is now


$$\dot\pi=\{H,\pi\};\dot\phi=\{H,\phi\}~?\tag{8}$$



Answer



First, note that the EOM are the Euler-Lagrange equations:


$$ \frac{\delta S}{\delta \phi}=\partial_\mu\left(\frac{\partial \mathscr L}{\partial\phi_{,\mu}}\right)-\frac{\partial \mathscr L}{\partial \phi}=\dot\pi+\partial_i\left(\frac{\partial \mathscr L}{\partial\phi_{,i}}\right)-\frac{\partial \mathscr L}{\partial \phi} $$ where I isolated the $\mu=0$ term, and used the definition of $\pi$.



Next, use $\mathscr L=\pi\dot\phi-\mathscr H$: $$ \frac{\delta S}{\delta \phi}=\dot\pi+\partial_i\left(\frac{\partial \mathscr L}{\partial\phi_{,i}}\right)-\frac{\partial \mathscr L}{\partial \phi}=\dot\pi-\partial_i\left(\frac{\partial \mathscr H}{\partial\phi_{,i}}\right)+\frac{\partial \mathscr H}{\partial \phi}=\dot\pi+\frac{\delta H}{\delta \phi} $$ because $\pi$ and $\dot\phi$ are not functions of $\phi$.


Thus, we get $\dot\pi=-\frac{\delta H}{\delta\phi}=\{H,\pi\}$.


The other relation is easier: $$ \{H,\phi\}=\frac{\delta \mathscr H}{\delta \pi} $$ Next, use $\mathscr H=\pi\dot\phi-\mathscr L$: $$ \{H,\phi\}=\frac{\delta \mathscr H}{\delta \pi}=\dot\phi $$ because $\mathscr L$ is not a function of $\pi$.


ADDENDUM


Let $f(\phi,\pi)$ and $g(\phi,\pi)$ be two function on "Phase space". Then, by definition, $$ \{f(\boldsymbol x),g(\boldsymbol y)\}\equiv\int\mathrm d\boldsymbol z\ \frac{\delta f(\boldsymbol x)}{\delta \phi(\boldsymbol z)}\frac{\delta g(\boldsymbol y)}{\delta \pi(\boldsymbol z)}-\frac{\delta g(\boldsymbol y)}{\delta \phi(\boldsymbol z)}\frac{\delta f(\boldsymbol x)}{\delta \pi(\boldsymbol z)} $$ where everything is evaluated at the same time $t$ (not writen for clarity). This means that $$ \{H(t),\pi(t,\boldsymbol x)\}=\int\mathrm d\boldsymbol z\ \frac{\delta H(t)}{\delta \phi(\boldsymbol z)}\frac{\delta \pi(\boldsymbol x)}{\delta \pi(\boldsymbol z)}-\frac{\delta \pi(\boldsymbol x)}{\delta \phi(\boldsymbol z)}\frac{\delta H(t)}{\delta \pi(\boldsymbol z)}=\int\mathrm d\boldsymbol z\ \frac{\delta H(t)}{\delta \phi(\boldsymbol z)}\delta(\boldsymbol x-\boldsymbol z) $$ which equals $\frac{\delta H}{\delta \phi}$, as expected.


ADDENDUM II


Proof of $\frac{\delta H}{\delta \phi}=\frac{\partial \mathscr H}{\partial \phi}-\partial_i\left(\frac{\partial\mathscr H}{\partial\phi_{,i}}\right)$:


The dynamical variables of the Lagrangian are $\phi$ and $\partial_\mu\phi$. In the Hamiltonian formulation, we change $\partial_0\phi\leftrightarrow\pi$, so that the dynamical variables of the Hamiltonian are $\phi,\,\partial_i\phi$ and $\pi$.


With this in mind, the Hamiltonian is, by definition, $$ H=\int\mathrm d\boldsymbol x\ \mathscr H(\phi(\boldsymbol x),\phi_{,i}(\boldsymbol x),\pi(\boldsymbol x)) $$


Therefore, $$ \delta H=\int\mathrm d\boldsymbol x\ \delta\mathscr H(\phi(\boldsymbol x),\phi_{,i}(\boldsymbol x),\pi(\boldsymbol x)) $$ where $$ \delta\mathscr H(\phi,\phi_{,i},\pi)=\frac{\partial \mathscr H}{\partial \phi}\delta\phi+\frac{\partial \mathscr H}{\partial \phi_{,i}}\delta\phi_{,i}+\frac{\partial \mathscr H}{\partial\pi}\delta\pi $$



Next, as we want $\frac{\delta H}{\delta \phi}$, we want to leave $\pi$ unchanged, so $\delta\pi=0$ (this is analogous to ordinary partial derivatives: when you calculate $\frac{\partial f(x,y)}{\partial x}$ you want to make a small displacement of $x$, while leaving $y$ unchanged)$\phantom{}^1$.


Anyway, in the integral over $\mathrm d\boldsymbol x$, we can integrate by parts the $\delta \phi_{,i}=\partial_i\delta \phi$ to make the derivative act on $\frac{\partial\mathscr H}{\partial\phi_{,i}}$:


$$ \delta\mathscr H(\phi,\phi_{,i},\pi)=\frac{\partial \mathscr H}{\partial \phi}\delta\phi-\partial_i\left(\frac{\partial \mathscr H}{\partial \phi_{,i}}\right)\delta\phi+\text{surface terms} $$


Finally, back to $H$: $$ \delta H=\int\mathrm d\boldsymbol x\ \left(\frac{\partial \mathscr H}{\partial \phi}-\partial_i\left(\frac{\partial \mathscr H}{\partial \phi_{,i}}\right)\right)\delta\phi $$ where I assumed that surface terms dont contribute. The expression in the parentheses is, by definition, the functional derivative of $H$ w.r.t. $\phi$.


$\phantom{}^1$: If we took $\delta\pi\neq 0$ and $\delta\phi=0$, we would get $\frac{\delta H}{\delta \pi}$ instead. All this is possible because the system is unconstrained, which is not true in some theories (such as the Dirac Lagrangian); in these cases, you can't use Poisson brackets, but Dirac brackets instead.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...