A particle can be set off in a certain direction by giving them momentum. Momentum is a vector, so the particle heads off in a specific direction. But the wave function of the particle allows it to obtain other momentum values, which would steer the particle on a different path. How then can we "shoot" electrons and other particles in straight lines? How can they maintain their momentum in the face of quantum uncertainty?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form ψ=Ae−βrwith $A = \frac{\bet...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
The gravitation formula says F=Gm1m2r2,so if the mass of a bob increases then the torque on it should also increase...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Small vessels generally lean into a turn, whereas big vessels lean out. Why do ships lean to the outside, but boats lean to the inside of a ...
No comments:
Post a Comment