Let's say the objects are marble size or even single atoms or quarks. They are placed in an otherwise empty universe(expanding or non-expanding) at opposite ends of the universe with an arbitrarily large distance between them. With a combination of great enough distance and small enough mass will the gravitational pull between the two objects ever equal zero or merely approach it? Given an infinite amount of time would they ever meet?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
As the title says. It is common sense that sharp things cut, but how do they work at the atomical level? Answer For organic matter, such a...
-
How can we know the order of a Feynman diagram just from the pictorial representation? Is it the number of vertices divided by 2? For exampl...
-
The gravitation formula says F=Gm1m2r2,so if the mass of a bob increases then the torque on it should also increase...
-
Problem Statement: Imagine a spherical ball is dropped from a height h, into a liquid. What is the maximum average height of the displaced...
-
I have been studying scattering theory in Sakurai's quantum mechanics. The phase shift in scattering theory has been a major conceptual ...
-
Inspired by Polyomino Z pentomino and rectangle packing into rectangle Also in this series: Tiling rectangles with F pentomino plus rectangl...
No comments:
Post a Comment