I've seen an interesting explanation for lots of what I previously thought were unmotivated definitions in Newtonian mechanics, namely that power is always defined as effort times flow. But when trying to define power in dynamics obviously you need to deal with vectors, hence my question : how is the dot product the good generalization of multiplication in R to space? Why not any other inner product on R3 that does reduce to multiplication on R? I know it's sort of the canonical inner product on R3, has that something to do with it?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form ψ=Ae−βrwith $A = \frac{\bet...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
I'm sitting in a room next to some totally unopened cans of carbonated soft drinks (if it matters — the two affected cans are Coke Zero...
-
Small vessels generally lean into a turn, whereas big vessels lean out. Why do ships lean to the outside, but boats lean to the inside of a ...
-
What exactly are the spikes, or peaks and valleys, caused by in pictures such as these Wikipedia states that "From the point of view of...
No comments:
Post a Comment