I just started reading PCT, Spin and Statistics, and All That. Can someone explain why we use operator valued distributions to describe fields? I read somewhere that it would take infinite energy to measure an observable at a single point. Why don't we instead use functions from some collection of subsets (i.e. the open sets) of space to the operators to emulate the fact that measurements usually occur over some area? In other words, what is the physical meaning of the test functions used to define the operator valued distributions? Are some of these functions non-physical, possibly too narrow in width that they'd violate some uncertainty principle?
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form $$ \psi = A e^{-\beta r} $$ with $A = \frac{\bet...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
Sorry if this question is a bit broad but I can't find any info on this by just searching. The equation q = neAL where L is the length o...
-
I am making a simple little program that needs to simulate a physics concept. However, I am not exactly sure how the physics concept actuall...
No comments:
Post a Comment