Thursday, 4 April 2019

quantum mechanics - Practical example of stabilizer codes


Given the Steane code $$ \left|0\right\rangle_L \equiv \frac{1}{\sqrt{8}}(\left|0000000\right\rangle + \left|1010101\right\rangle + \left|0110011\right\rangle + \left|1100110\right\rangle + \left|0001111\right\rangle + \left|1011010\right\rangle + \left|0111100\right\rangle + \left|1101001\right\rangle) $$ $$ \left|1\right\rangle_L \equiv \frac{1}{\sqrt{8}}(\left|1111111\right\rangle + \left|0101010\right\rangle + \left|1001100\right\rangle + \left|0011001\right\rangle + \left|1110000\right\rangle + \left|0100101\right\rangle + \left|1000011\right\rangle + \left|0010110\right\rangle) $$


and its relative stabilizers: $$ K^1 = IIIXXXX $$ $$ K^2 = XIXIXIX $$ $$ K^3 = IXXIIXX $$ $$ K^4 = IIIZZZZ $$ $$ K^5 = ZIZIZIZ $$ $$ K^6 = IZZIIZZ $$


The stabilizer set establishes valid codewords for a state if the equation $$s\left|\psi\right\rangle=\left|\psi\right\rangle,\;\;\;\forall s \in S \;\;\;\;\; (1)$$ is satisfied. That means $\left|\psi\right\rangle$ is a +1 eigenstate of $s$.


We then consider a practical example of the usage of these stabilizers enter image description here


The state of the system is represented by: $$\left|\psi\right\rangle_F={1\over 2}(\left|\psi\right\rangle_I+U\left|\psi\right\rangle_I)\left|0\right\rangle + {1\over 2}(\left|\psi\right\rangle_I-U\left|\psi\right\rangle_I)\left|1\right\rangle$$



where $U \in \left\lbrace K^1,K^2,K^3\right\rbrace$.


We apply $U$ to the input state and we measure the ancilla qubits (syndrome measurement) to verify the integrity of the input (if $\left|\psi\right\rangle_I$ is +1 eigenstate of $K^1,K^2,K^3$). If the equation $(1)$ is not satisfied, then the corrupted qubit is corrected with a $Z$ gate addressed by the syndrome measurement.


This is how does the system work?



Answer



It is correct. We may summarize all the operations :


1) Encoding one logical qubit as $n$ physical qbits (codeword) , $\alpha|0\rangle + \beta |1\rangle \to \alpha|0\rangle_L + \beta |1\rangle_L$, here $n$ = 7 for the Steane code.


2) Preparing $m$ ancilla qbits, here $m = 3$, in your schema allowing to detect phase-flip errors $Z_i$


3) During transmission of the codeword, ther is exposition to noisy environment, and the codeword may suffer errors (bit -flip $X_i$, phase-flip $_iY$, bit-phase flip $Z_i$). In your schema, we are only intereseted in phase-flip errors $Z_i$.


4) With the help of the generators, we compute the syndrome and store it in the ancilla qbits without altering the $n$-qbit world.


5) Use the information provided by the error syndrome to locate the error of any one of the $n$ qbits of the codeword.



In your case, the generators $K_1, K_2, K_3$ are the only needed to check any error $Z_i$, and each syndrome $xyz$ identifies precisely the bit $i$ corresponding to the error $Z_i$. Here the syndromes for the $Z_i$ are $010,001,011,100,110,101,111$


6) Correct the error


Ref : Marinescu/Marinescu, Classical and Quantum information, Elsevier, p $462$, p $509$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...