Given that the position vector $\textbf{r}$ to be a vector under rotation, we mean that it transforms under rotation as $\textbf{r}^\prime=\mathbb{R}\textbf{r}$. Now, taking two time-derivatives of it, one can easily see that the acceleration $\textbf{a}=\ddot{\textbf{r}}$ transforms as $\textbf{a}^\prime=\mathbb{R}\textbf{a}$ i.e., also behaves as a vector under rotation.
Now a four-vector is something which transforms under Lorentz transformation as $x^\mu$ does. Given the transformation of $x^\mu$: $$x'^\mu=\Lambda^{\mu}{}_{\nu} x^\nu\tag{1}$$ how can one show that the four-current density $j^\mu$ also transforms like (1) preferably from the definition $j^\mu=(c\rho,\textbf{j})$?
No comments:
Post a Comment