Saturday, 21 November 2020

quantum mechanics - Bound States in a Double Delta Function Potential




Let $V(x) = −u \delta(x) - v \delta(x − a)$ where $u, v > 0$ correspond to a potential with two $\delta$ wells. Let $v > u$. If $a$ is very large, there is certainly a bound state: the particle sits in the $\delta$-well. As $a$ decreases to a certain critical value, the bound state disappears. I need help finding that value.


My idea was: Before the bound state disappears, its energy approaches $0$. I'm trying to assume that the energy $E$ is a very small negative number, solve the Schrodinger equation, and find the suitable value of $a$, but I'm having trouble doing this.


Would someone be able to help me with this problem?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...