Wednesday, 11 November 2020

kinematics - Why is average velocity the midpoint of initial and final velocity under constant acceleration?


Since average velocity is defined as$^1$ $$\vec{\mathbf v}_\mathrm{av}=\frac{\vec{\mathbf x}-\vec{\mathbf x}_0}{t-t_0},$$ where $\vec{\mathbf x}$ denotes position, why is this quantity equal to $$\frac{\vec{\mathbf v}+\vec{\mathbf v}_0}{2},$$ where $\vec{\mathbf v}=\frac{d\vec{\mathbf x}}{dt}$ and $\vec{\mathbf v}_0=\left.\frac{d\vec{\mathbf x}}{dt}\right|_{t=t_0}$, when acceleration is constant?


What in particular about constant acceleration allows average velocity to be equal to the midpoint of velocity?



$^1$: Resnick, Halliday, Krane, Physics (5th ed.), equation 2-7.



Answer



Note that $\vec{\mathbf v}_\mathrm{av}$ is defined as the average value of $\vec{\mathbf v}$: $$\vec{\mathbf v}_\mathrm{av}:=\frac{1}{t_1-t_0}\int_{t_0}^{t_1}\vec{\mathbf v}(t)\,\mathrm dt.$$ Since $\vec{\mathbf x}$ is the antiderivative of $\vec{\mathbf v}$, this equals $$\frac{\vec{\mathbf x}(t_1)-\vec{\mathbf x}(t_0)}{t_1-t_0}.$$ However, when acceleration is constant, and thus $\vec{\mathbf v}$ is a line (that is, $\vec{\mathbf v}(t)=\vec{\mathbf a}t+\vec{\mathbf v}_0$), then by plugging into the average value integral, you obtain the equality $$\vec{\mathbf v}_\mathrm{av}=\frac{\vec{\mathbf v}(t_1)+\vec{\mathbf v}(t_0)}{2}.$$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...