Thursday, 30 July 2015

lagrangian formalism - Derrick’s theorem


Consider a theory in $D$ spatial dimensions involving one or more scalar fields $\phi_a$, with a Lagrangian density of the form $$L= \frac{1}{2} G_{ab}(\phi) \partial_\mu \phi_a \partial^\mu \phi_b- V(\phi)$$ where the eigenvalues of $G$ are all positive definite for any value of $\phi$, and $V = 0$ at its minima. Any finite energy static solution of the field equations is a stationary point of the potential energy $$E = I_K + I_V ,$$ where $$I_K[\phi]= \frac{1}{2} \int d^Dx G_{ab}(\phi) \partial_j \phi_a \partial_j\phi_b$$ and $$I_V = \int d^Dx V(\phi)$$ are both positive. Since the solution is a stationary point among all configurations, it must, a fortiori, also be a stationary point among any subset of these configurations to which it belongs. Therefore, given a solution $\phi(x)$, consider the one-parameter family of configurations, $$f_\lambda(x)= \bar{\phi}(\lambda x)$$ that are obtained from the solution by rescaling lengths. The potential energy of these configurations is given by \begin{align} E_\lambda &= I_K(f_\lambda) + I_V(f_\lambda)\\ &=\lambda^{2-D} I_K[\bar\phi]+\lambda^{-D} I_V[\bar\phi]\tag{1} \end{align}




$\lambda = 1$ must be a stationary point of $E(\lambda)$, which implies that $$0=(D-2) I_K[\bar\phi]+D I_V[\bar\phi] \tag{2}$$



My problem is, how they got the equation(2) from (1)?



Answer



I didn't go through all of your equations. However, if you take (1), differentiate it w.r.t $\lambda$ and set $\lambda = 1$, then since $\lambda=1$ is the stationary point $E'(\lambda)|_{\lambda=1} = 0$. This is equation (2)


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...