Monday, 13 July 2015

special relativity - General matrix Lorentz transformation


I just finished an introduction course into theory of relativity and am trying to find the general matrix Lorentz transformation. I have already looked into this question, but I could not make much out of it.


Basically, we know that for one space vector relating a frame S and S': \begin{equation} \begin{bmatrix} ct \\ x \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{bmatrix} \begin{bmatrix} ct' \\ x' \end{bmatrix} \end{equation} This I simplify to $x = L_1 x'$. My thinking therefore is that if S' moves from S in two space coordinates ($x$ and $y$), then I can use first move in $x$ and then in $y$, such that $x=L_1 L_2 x'$, where in $L_1$ I keep the $y$ coordinate fixed, and in $L_2$ I keep the x coordinate fixed. Writing this out would be: \begin{equation} \begin{bmatrix} ct \\ x \\ y \end{bmatrix} = \begin{bmatrix} \gamma_x & \gamma_x \beta_x & 0\\ \gamma_x \beta_x & \gamma_x & 0\\ 0 & 0 & 1\\ \end{bmatrix} \begin{bmatrix} \gamma_y & 0 &\gamma_y \beta_y\\ 0 & 1 & 0\\ \gamma_y \beta_y & 0& \gamma_y\\ \end{bmatrix} \begin{bmatrix} ct' \\ x' \\ y' \end{bmatrix} \end{equation}


\begin{equation} \begin{bmatrix} ct \\ x \\ y \end{bmatrix} = \begin{bmatrix} \gamma_x \gamma_y & \gamma_x \beta_x & \gamma_x \gamma_y \beta_y\\ \gamma_x \beta_x \gamma_y & \gamma_x & \gamma_x \beta_x \gamma_y \beta_y\\ \gamma_y \beta_y & 0 & \gamma_y\\ \end{bmatrix} \begin{bmatrix} ct' \\ x' \\ y' \end{bmatrix} \end{equation} To me all of this looks quite neat, but when I try to apply it to velocity addition, I get false results. As far as I could make it out, the zero in the last 3x3 matrix is wrong (,which won't disappear neither if I add a z coordinate as well... ).


I am therefore hoping that someone can indicate to me where I am doing something wrong when trying to create a more general lorentz matrix equation. I have found on wikipedia a big matrix equation, but because it starts talking about rotations and so on, plus it doesnt show how the components are put together, I dismissed it for now.


(In case this is correct and my sense that I got it wrong is false due to the velocity addition method I apply, do let me know, and I can elaborate on that method as well. )




Answer



enter image description here


From Figure 01 :


Lorentz Transformation from $\:\mathrm{S}\equiv \{xy\eta, \eta=ct\}\:$ to $\:\mathrm{S_{1}}\equiv \{x_{1}y_{1}\eta_{1}, \eta_{1}=ct_{1}\}\:$ \begin{equation} \begin{bmatrix} x_{1}\\ y_{1}\\ \eta_{1} \end{bmatrix} = \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & -\sinh\zeta \\ 0 & 1 & 0 \\ -\sinh\zeta & 0 & \hphantom{-}\cosh\zeta \\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \eta \end{bmatrix} \,, \quad \tanh\zeta=\dfrac{u}{c} \tag{01} \end{equation} or \begin{equation} \mathbf{X_{1}}=\mathrm{L_{1}}\mathbf{X}\,, \qquad \mathrm{L_{1}}= \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & -\sinh\zeta \\ 0 & 1 & 0 \\ -\sinh\zeta & 0 & \hphantom{-}\cosh\zeta \\ \end{bmatrix} \tag{01"} \end{equation}


enter image description here


From Figure 02:


Lorentz Transformation from $\:\mathrm{S_{1}}\equiv \{x_{1}y_{1}\eta_{1}, \eta_{1}=ct_{1}\}\:$ to $\:\mathrm{S_{2}}\equiv \{x_{2}y_{2}\eta_{2}, \eta_{2}=ct_{2}\}\:$ \begin{equation} \begin{bmatrix} x_{2}\\ y_{2}\\ \eta_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 &\hphantom{-}\cosh\xi & -\sinh\xi \\ 0 & -\sinh\xi & \hphantom{-}\cosh\xi \\ \end{bmatrix} \begin{bmatrix} x_{1}\\ y_{1}\\ \eta_{1} \end{bmatrix} \,, \quad \tanh\xi=\dfrac{w}{c} \tag{02} \end{equation} or \begin{equation} \mathbf{X_{2}}=\mathrm{L_{2}}\mathbf{X_{1}}\,, \qquad \mathrm{L_{2}}= \begin{bmatrix} 1 & 0 & 0 \\ 0 &\hphantom{-}\cosh\xi & -\sinh\xi \\ 0 & -\sinh\xi & \hphantom{-}\cosh\xi \\ \end{bmatrix} \tag{02"} \end{equation} Note that because of the Standard Configurations the matrices $\:\mathrm{L_{1}}, \mathrm{L_{2}}\:$ are real symmetric.


From equations (01) and (02) we have \begin{equation} \mathbf{X_{2}}=\mathrm{L_{2}}\mathbf{X_{1}}=\mathrm{L_{2}}\mathrm{L_{1}}\mathbf{X}\Longrightarrow \mathbf{X_{2}}=\Lambda\mathbf{X} \tag{03} \end{equation} where $\:\Lambda\:$ the composition of the two Lorentz Transformations $\:\mathrm{L_{1}}, \mathrm{L_{2}}\:$ \begin{equation} \Lambda=\mathrm{L_{2}}\mathrm{L_{1}}= \begin{bmatrix} 1 & 0 & 0 \\ 0 &\hphantom{-}\cosh\xi & -\sinh\xi \\ 0 & -\sinh\xi & \hphantom{-}\cosh\xi \\ \end{bmatrix} \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & -\sinh\zeta \\ 0 & 1 & 0 \\ -\sinh\zeta & 0 & \hphantom{-}\cosh\zeta \\ \end{bmatrix} \tag{04} \end{equation} that is \begin{equation} \Lambda= \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & -\sinh\zeta \\ \hphantom{-}\sinh\zeta\sinh\xi &\hphantom{-}\cosh\xi & -\cosh\zeta\sinh\xi \\ -\sinh\zeta\cosh\xi & -\sinh\xi & \hphantom{-}\cosh\zeta\cosh\xi \\ \end{bmatrix} \tag{04"} \end{equation}


The Lorentz Transformation matrix $\:\Lambda\:$ is not symmetric, so the systems $\:\mathrm{S},\mathrm{S_{2}}\:$ are not in the Standard configuration. But it could be written as \begin{equation} \Lambda=\mathrm{R}\cdot\mathrm{L} \tag{05} \end{equation} where $\:\mathrm{L}\:$ is the symmetric Lorentz Transformation matrix from $\:\mathrm{S}\:$ to an intermediate system $\:\mathrm{S'_{2}}\:$ in Standard configuration to it and co-moving with $\:\mathrm{S_{2}}\:$, while $\:\mathrm{R}\:$ is a purely spatial transformation from $\:\mathrm{S'_{2}}\:$ to $\:\mathrm{S_{2}}$.


enter image description here



Now it's up to you to find the Lorentz Transformation matrix $\:\mathrm{L}\:$ first and then to prove that $\:\mathrm{R}\:$ is \begin{equation} \boxed{\color{blue}{\:\:\mathrm{R}= \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi &\hphantom{-}\cos\phi & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \,, \:\text{where}\: \tan\phi =\dfrac{\sinh\zeta\sinh\xi} {\cosh\zeta+\cosh\xi}\,, \: \phi \in \left(-\dfrac{\pi}{2},+\dfrac{\pi}{2}\right)}\:\:\vphantom{\begin{matrix}1\\1\\1\\1\\1\end{matrix}}} \tag{06} \end{equation} representing a plane rotation from $\:\mathrm{S'_{2}}\:$ to $\:\mathrm{S_{2}}\:$, see Figure 03.




EDIT


The Lorentz Transformation matrix $\:\mathrm{L}\:$, from $\:\mathrm{S}\:$ to the intermediate system $\:\mathrm{S'_{2}}\:$ in Standard Configuration to it, is : \begin{equation} \mathrm{L}\left(\boldsymbol{\upsilon} \right)= \begin{bmatrix} 1\!+\!\left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}^{2}_{x} & \left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}_{x}\mathrm{n}_{y} & \!-\dfrac{\gamma_{\!\upsilon}\upsilon_{x}}{c} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}_{y}\mathrm{n}_{x} & 1\!+\!\left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}^{2}_{y} & \!-\dfrac{\gamma_{\!\upsilon}\upsilon_{y}}{c} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \!-\dfrac{\gamma_{\!\upsilon}\upsilon_{x}}{c} & \!-\dfrac{\gamma_{\!\upsilon}\upsilon_{y}}{c} & \gamma_{\!\upsilon} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}} \end{bmatrix} \tag{07} \end{equation} In (07) \begin{align} \boldsymbol{\upsilon} & = \left(\upsilon_{x},\upsilon_{y}\right) \tag{08.1}\\ \mathbf{n} & = \left(\mathrm{n}_{x},\mathrm{n}_{y}\right)=\dfrac{\boldsymbol{\upsilon}}{\Vert\boldsymbol{\upsilon}\Vert}=\dfrac{\boldsymbol{\upsilon}}{\upsilon} \tag{08.2}\\ \gamma_{\upsilon} & = \left(\!1\!-\!\frac{\upsilon^{2}}{c^{2}}\right)^{-\frac12}=\dfrac{1}{\sqrt{\!1\!-\!\dfrac{\upsilon^{2}}{c^{2}}}} \tag{08.3} \end{align} where $\:\boldsymbol{\upsilon}\:$ is the velocity vector of the origin $\:\mathrm{O'}_{\!\!2}\left(\equiv \mathrm{O}_{2}\right)\:$ with respect to $\:\mathrm{S}$, $\:\mathbf{n}\:$ the unit vector along $\:\boldsymbol{\upsilon}\:$ and $\:\gamma_{\upsilon}\:$ the corresponding $\:\gamma-$factor.


The velocity vector $\:\boldsymbol{\upsilon}\:$ could be expressed in terms of the rapidities $\:\zeta,\xi\:$ and so we could express the matrix $\:\mathrm{L}\:$ as function of them. To begin with this we first note that the velocity vector $\:\boldsymbol{\upsilon}\:$ is the relativistic sum of two orthogonal velocity vectors $\:\mathbf{u}=\left(u\,,0\right),\mathbf{w}=\left(0\,,w\right)$ \begin{equation} \boldsymbol{\upsilon}=\mathbf{u}+\dfrac{\mathbf{w}}{\gamma_{\!u}}=\left[u\,,\left(\!1\!-\!\frac{u^{2}}{c^{2}}\right)^{\!\!\frac12}\!\!w\right]\,,\quad \gamma_{u} = \left(\!1\!-\!\frac{u^{2}}{c^{2}}\right)^{\!\!-\frac12} \tag{09} \end{equation} not to be confused with the relativistic sum of two collinear velocity vectors pointing to the same direction \begin{equation} \upsilon \ne \dfrac{u\!+\!w}{1+\dfrac{uw}{c^{2}}} \tag{10} \end{equation} From (09) we have \begin{align} \dfrac{\upsilon_{x}}{c} & = \dfrac{u}{\:\:c\:\:}=\tanh\zeta \tag{11.1}\\ \dfrac{\upsilon_{y}}{c} & = \dfrac{w}{\gamma_{u}c}= \dfrac{\tanh\xi}{\cosh\zeta} \tag{11.2}\\ \left(\dfrac{\upsilon}{c}\right)^{2} & = \left(\dfrac{\upsilon_{x}}{c}\right)^{2}+\left(\dfrac{\upsilon_{y}}{c}\right)^{2}=1-\left(\dfrac{1}{\cosh\zeta\cosh\xi}\right)^{2}=\dfrac{\gamma^{2}_{\upsilon}\!-\!1}{\gamma^{2}_{\upsilon}} \tag{11.3}\\ \gamma_{\upsilon} & = \left(\!1\!-\!\frac{\upsilon^{2}}{c^{2}}\right)^{-\frac12}=\cosh\zeta\cosh\xi \tag{11.4} \end{align} and \begin{align} \dfrac{\gamma_{\!\upsilon}\upsilon_{x}}{c} & = \sinh\zeta \cosh\xi \tag{12.1}\\ \dfrac{\gamma_{\!\upsilon}\upsilon_{y}}{c} & = \sinh\xi \tag{12.2}\\ 1\!+\!\left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}^{2}_{x} & = 1\!+\!\left(\gamma_{\!\upsilon}\!-\!1\right)\dfrac{\left(\dfrac{\upsilon_{x}}{c}\right)^{2}}{\left(\dfrac{\upsilon}{c}\right)^{2}}=1\!+\!\dfrac{\gamma^{2}_{\!\upsilon}}{1\!+\!\gamma_{\!\upsilon}}\tanh^{2}\!\zeta=1\!+\!\dfrac{\sinh^{2}\!\zeta\cosh^{2}\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} \tag{12.3}\\ 1\!+\!\left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}^{2}_{y} & = 1\!+\!\left(\gamma_{\!\upsilon}\!-\!1\right)\dfrac{\left(\dfrac{\upsilon_{y}}{c}\right)^{2}}{\left(\dfrac{\upsilon}{c}\right)^{2}}=1\!+\!\dfrac{\gamma^{2}_{\!\upsilon}}{1\!+\!\gamma_{\!\upsilon}}\dfrac{\tanh^{2}\!\xi}{\cosh^{2}\!\zeta}=1\!+\!\dfrac{\sinh^{2}\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} \tag{12.4}\\ \left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}_{x}\mathrm{n}_{y} & =\left(\gamma_{\!\upsilon}\!-\!1\right)\dfrac{\left(\dfrac{\upsilon_{x}}{c}\right)\!\!\left(\dfrac{\upsilon_{y}}{c}\right)}{\left(\dfrac{\upsilon}{c}\right)^{2}}=\dfrac{\gamma^{2}_{\!\upsilon}}{1\!+\!\gamma_{\!\upsilon}}\dfrac{\tanh\!\zeta\tanh\!\xi}{\cosh\!\zeta}=\dfrac{\sinh\!\zeta\sinh\!\xi\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} \tag{12.5} \end{align} So the matrix $\:\mathrm{L}\left(\boldsymbol{\upsilon} \right)\:$ of equation (07) as function of the rapidities $\:\zeta,\xi\:$ is \begin{equation} \mathrm{L}\left(\boldsymbol{\upsilon} \right)= \begin{bmatrix} 1\!+\!\dfrac{\sinh^{2}\!\zeta\cosh^{2}\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \dfrac{\sinh\!\zeta\sinh\!\xi\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \!-\sinh\zeta \cosh\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \dfrac{\sinh\!\zeta\sinh\!\xi\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & 1\!+\!\dfrac{\sinh^{2}\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \!-\sinh\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \!-\sinh\zeta \cosh\xi & \!-\sinh\xi & \cosh\zeta\cosh\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}} \end{bmatrix} \tag{13} \end{equation} Now, in order to determine the spatial transformation $\:\mathrm{R}\:$ we have from (05) \begin{equation} \mathrm{R}=\Lambda\cdot\mathrm{L}^{-1} \tag{14} \end{equation} For $\:\mathrm{L}^{-1}\:$ equation (07) yields \begin{equation} \mathrm{L}^{-1}=\mathrm{L}\left(\!-\!\boldsymbol{\upsilon} \right)= \begin{bmatrix} 1\!+\!\left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}^{2}_{x} & \left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}_{x}\mathrm{n}_{y} & \dfrac{\gamma_{\!\upsilon}\upsilon_{x}}{c} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}_{y}\mathrm{n}_{x} & 1\!+\!\left(\gamma_{\!\upsilon}\!-\!1\right)\!\mathrm{n}^{2}_{y} & \dfrac{\gamma_{\!\upsilon}\upsilon_{y}}{c} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \dfrac{\gamma_{\!\upsilon}\upsilon_{x}}{c} & \dfrac{\gamma_{\!\upsilon}\upsilon_{y}}{c} & \gamma_{\!\upsilon} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}} \end{bmatrix} \tag{15} \end{equation} and from (13) \begin{equation} \mathrm{L}^{-1}= \begin{bmatrix} 1\!+\!\dfrac{\sinh^{2}\!\zeta\cosh^{2}\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \dfrac{\sinh\!\zeta\sinh\!\xi\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \sinh\!\zeta \cosh\!\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \dfrac{\sinh\!\zeta\sinh\!\xi\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & 1\!+\!\dfrac{\sinh^{2}\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \sinh\!\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \sinh\!\zeta \cosh\!\xi & \sinh\!\xi & \cosh\!\zeta\cosh\!\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}} \end{bmatrix} \tag{16} \end{equation} So \begin{equation} \mathrm{R}= \begin{bmatrix} \hphantom{-}\cosh\zeta & 0 & -\sinh\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \hphantom{-}\sinh\zeta\sinh\xi &\hphantom{-}\cosh\xi & -\cosh\zeta\sinh\xi\vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}} \\ -\sinh\zeta\cosh\xi & -\sinh\xi & \hphantom{-}\cosh\zeta\cosh\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \end{bmatrix} \begin{bmatrix} 1\!+\!\dfrac{\sinh^{2}\!\zeta\cosh^{2}\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \dfrac{\sinh\!\zeta\sinh\!\xi\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \sinh\!\zeta \cosh\!\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \dfrac{\sinh\!\zeta\sinh\!\xi\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & 1\!+\!\dfrac{\sinh^{2}\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \sinh\!\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \sinh\!\zeta \cosh\!\xi & \sinh\!\xi & \cosh\!\zeta\cosh\!\xi \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}} \end{bmatrix} \tag{17} \end{equation} Above matrix multiplication ends up to the following expression \begin{equation} \mathrm{R}= \begin{bmatrix} \dfrac{\cosh\!\zeta\!+\!\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} &\!- \dfrac{\sinh\!\zeta\sinh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \hphantom{-} 0 \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ \dfrac{\sinh\!\zeta\sinh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \hphantom{\!-} \dfrac{\cosh\!\zeta\!+\!\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi} & \hphantom{-} 0 \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\ 0 & 0 & \hphantom{-} 1 \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}} \end{bmatrix} \tag{18} \end{equation} But \begin{equation} \left(\dfrac{\cosh\!\zeta\!+\!\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi}\right)^{2}+\left(\dfrac{\sinh\!\zeta\sinh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi}\right)^{2}=1 \tag{19} \end{equation} so we can define \begin{equation} \cos\phi \stackrel{def}{\equiv}\dfrac{\cosh\!\zeta\!+\!\cosh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi}\,, \qquad \sin\phi =\dfrac{\sinh\!\zeta\sinh\!\xi}{1\!+\!\cosh\!\zeta\cosh\!\xi}\,, \qquad \phi \in \left(-\tfrac{\pi}{2},+\tfrac{\pi}{2}\right) \tag{20} \end{equation} and finally \begin{equation} \mathrm{R}= \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi &\hphantom{-}\cos\phi & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \tag{21} \end{equation} proving that $\:\mathrm{R}\:$ is a rotation, see Figure 03.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...