Sunday 20 December 2015

magnetohydrodynamics - How is the MHD magnetic field time evolution equation transformed to the vector potential time evolution equation?


Starting from the time evolution equation of the magnetic field for incompressible MHD (magnetohydrodynamics)


$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B}) + \frac{\eta}{\mu_{0}} \nabla^{2} \vec{B}$$


and the definition of the vector potential $\vec{A}$



$$ \nabla \times \vec{A} = \vec{B}$$


How is it that one can arrive at the time evolution equation of the vector potential? Which is


$$\frac{\partial \vec{A}}{\partial t} + (\vec{v} \cdot \nabla) \vec{A} = \frac{\eta}{\mu_{0}} \nabla^{2} \vec{A}$$


according to these lecture notes (NB: PDF) from Rony Keppens.


I have derived that


\begin{align} \nabla \times (\vec{v} \times \vec{B}) &= -(\nabla \cdot \vec{v})\vec{B} - (\vec{v} \cdot \nabla)\vec{B} + (\vec{B} \cdot \nabla)\vec{v} + (\nabla \cdot \vec{B})\vec{v}\\ &= -(\vec{v} \cdot \nabla)\vec{B} + (\vec{B} \cdot \nabla)\vec{v} \end{align} where I have used the Maxwell equation that $\nabla \cdot \vec{B} = 0$ and the continuity equation for an incompressible fluid $\nabla \cdot \vec{v} = 0$. However, I don't think this helps me at all.


Chiefly, I think my difficulty is understanding how to recover $\frac{\partial \vec{A}}{\partial t}$ from setting $\frac{\partial \vec{B}}{\partial t} = \frac{\partial (\nabla \times \vec{A})}{\partial t}$


But in general my question is: how does one derive the time evolution equation for the vector potential in the form written above?



Answer



You are making the problem too difficult for yourself. You should be looking for vector calculus identities and space-time orthogonality. Specifically, $$ \frac{\partial}{\partial t}\nabla\times\mathbf A=\nabla\times\frac{\partial\mathbf A}{\partial t}\\ \nabla^2\left(\nabla\times\mathbf A\right)=\nabla\times\left(\nabla^2\mathbf A\right) $$ You'll then have three terms with $\nabla\times$ in front (ignoring constants): $$ \nabla\times\frac{\partial\mathbf A}{\partial t}=\nabla\times\mathbf u\times\nabla\times\mathbf A+\nabla\times\nabla^2\mathbf A\tag{1} $$ This is a vector relation of the form, $$ \nabla\times\mathbf f=\nabla\times\mathbf g $$ which implies $$ \mathbf f=\mathbf g+\nabla h $$ where $h$ is some scalar.



Thus, Equation (1) can be 'uncurled' by considering the equivalent relation $$ \frac{\partial\mathbf A}{\partial t}=\mathbf u\times\nabla\times\mathbf A+\nabla^2\mathbf A+\nabla\phi $$ (taking the curl of this returns (1)) where $\phi$ is your gauge. Then using the BAC-CAB rule, you get $$ \frac{\partial\mathbf A}{\partial t}=\nabla\left(\mathbf u\cdot\mathbf A\right)-\left(\mathbf u\cdot\nabla\right)\mathbf A + \nabla^2\mathbf A+\nabla\phi\tag{2} $$ You can then fix the gauge, choosing $\phi=-\mathbf u\cdot\mathbf A$ such that (2) becomes \begin{align} \frac{\partial\mathbf A}{\partial t}&=\nabla\left(\mathbf u\cdot\mathbf A\right)-\left(\mathbf u\cdot\nabla\right)\mathbf A + \nabla^2\mathbf A-\nabla\left(\mathbf u\cdot\mathbf A\right)\\ &=-\left(\mathbf u\cdot\nabla\right)\mathbf A + \nabla^2\mathbf A\tag{$\star$} \end{align} where ($\star$) is the result you are after.


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...