Monday, 9 May 2016

mathematics - Make numbers 1-100 with only four 8s


Make numbers 1, 2, 3, 4, 5,.....100 using only four 8s. You can use multiplication, division, addition, and subtraction. No negatives. You may use exponents.


Example:


$1 = 8 \times 8 \div 8 \div 8$



Answer



It is not possible to generate all the numbers with only the give operations.
I used a computer for that.
The only ones are 1,2,3,4,6,7,8,9,10,12,15,16,17,19,24,32,48,56,63,64,65,72,80,87,88,89 (marked in bold).



So I took the liberty to use other functions like square root ($\sqrt{x}$), ceil ($\lceil x \rceil$), floor ($\lfloor x \rfloor$).


1 = $\frac{88}{88}$
2 = $\frac88 + \frac88$
3 = $\frac{88}{8} - 8$
4 = $\frac{8 \times 8}{8+8}$
5 = $\sqrt{8+8} + \frac88$
6 = $8 - \frac{8 + 8}{8}$
7 = $\frac{8 \times 8 - 8}{8}$
8 = $8 + 8 \times (8 - 8)$
9 = $\frac{8 \times 8 + 8}{8}$

10 = $\frac{88 - 8}{8}$
11 = $\lceil \sqrt8 \rceil + 8-8+8$
12 = $\frac{88 + 8}{8}$
13 = $\lfloor \sqrt8 \rfloor + \frac{88}{8}$
14 = $\lceil \sqrt8 \rceil + \frac{88}{8}$
15 = $8 + 8 - \frac88$
16 = $8 \times \frac{8+8}{8}$
17 = $8 + 8 + \frac88$
18 = $8 + 8 + \sqrt{\sqrt{8+8}}$
19 = $\frac{88}{8} + 8$

20 = $8 + 8 + \sqrt{8+8}$
21 = $8 + 8 + \lceil \sqrt{8} \rceil + \lfloor \sqrt{8} \rfloor$
22 = $\frac{88}{\sqrt{8+8}}$
23 = $\lceil\sqrt{8}\rceil^{\lceil\sqrt{8}\rceil} - \sqrt{8+8}$
24 = $88-8\times 8$
25 = $\lceil\sqrt{8}\rceil^{\lceil\sqrt{8}\rceil} - \sqrt{\sqrt{8+8}}$
26 = $ 8 +8 +8 + \lfloor \sqrt{8} \rfloor$
27 = $\lceil \sqrt8 \rceil + 8+8+8$
28 = $8 \times \lceil\sqrt8\rceil + \sqrt{8+8}$
29 = $8 \times \sqrt{8+8} - \lceil \sqrt8 \rceil$

30 = $8 \times \sqrt{8+8} - \lfloor \sqrt8 \rfloor$
31 = $\lceil\sqrt{8}\rceil^{\lceil\sqrt{8}\rceil} + \sqrt{8+8}$
32 = $8 + 8 + 8 + 8$
33 = $8 \times \sqrt{8+8} + \lfloor \sqrt{\sqrt8} \rfloor$
34 = $8 \times \sqrt{8+8} + \lfloor \sqrt8 \rfloor$
35 = $8 \times \sqrt{8+8} + \lceil \sqrt8 \rceil$
36 = $(8 + \lfloor\sqrt{\sqrt8}\rfloor) \times \sqrt{8+8}$
37 = $\lfloor\frac{88}{\lceil\sqrt8\rceil}\rfloor + 8$
38 = $\lceil\frac{88}{\lceil\sqrt8\rceil}\rceil + 8$
39 = $(8+ \lceil\sqrt8\rceil + \lfloor\sqrt8\rfloor) \times \lceil\sqrt8\rceil$

40 = $8 \times \sqrt{8+8} + 8$
41 = $\frac{88}{\lfloor\sqrt8\rfloor} - \lceil\sqrt8\rceil$
42 = $\frac{88}{\lfloor\sqrt8\rfloor} - \lfloor\sqrt8\rfloor$
43 = $\frac{88}{\lfloor\sqrt8\rfloor} - \lfloor\sqrt{\sqrt8}\rfloor$
44 = $\frac{88}{\sqrt{\sqrt{8+8}}}$
45 = $\frac{88}{\lfloor\sqrt8\rfloor} + \lfloor\sqrt{\sqrt8}\rfloor$
46 = $\frac{88}{\lfloor\sqrt8\rfloor} + \lfloor\sqrt8\rfloor$
47 = $\frac{88}{\lfloor\sqrt8\rfloor} + \lceil\sqrt8\rceil$
48 = $8 \times 8 - 8 -8$
49 = $(8 - \lfloor \sqrt{\sqrt8} \rfloor) \times (8 - \lfloor \sqrt{\sqrt8} \rfloor)$

50 = $(\lfloor \sqrt8 \rfloor + \lceil \sqrt8 \rceil) \times (8 + \lfloor \sqrt8 \rfloor)$
51 = $(8+8) \times \lceil \sqrt8 \rceil + \lceil \sqrt8 \rceil$
52 = $\frac{88}{\lfloor\sqrt8\rfloor} + 8$
53 = $8 \times 8 - 8 - \lceil \sqrt8 \rceil$
54 = $8 \times 8 - 8 - \lfloor \sqrt8 \rfloor$
55 = $8 \times 8 - 8 - \lfloor \sqrt{\sqrt8} \rfloor$
56 = $8 \times (8 - \frac88)$
57 = $8 \times 8 - 8 + \lfloor \sqrt{\sqrt8} \rfloor$
58 = $8 \times 8 - 8 + \lfloor \sqrt8 \rfloor$
59 = $8 \times 8 - 8 + \lceil \sqrt8 \rceil$

60 = $8 \times 8 - \sqrt{8+8}$
61 = $8\times 8 - \lceil \frac{8}{\sqrt8}\rceil$
62 = $8\times 8 - \sqrt{\sqrt{8+8}}$
63 = $8 \times 8 - \frac88$
64 = $8 \times 8 \times \frac88$
65 = $8 * 8 + \frac88$
66 = $8\times 8 + \sqrt{\sqrt{8+8}}$
67 = $8\times 8 + \lceil \frac{8}{\sqrt8}\rceil$
68 = $8 \times 8 + \sqrt{8+8}$
69 = $8 + 8 \times 8 - \lceil \sqrt8 \rceil$

70 = $8 \times 8 + \sqrt{8+8}$
71 = $8 +8 \times 8 - \lfloor \sqrt{\sqrt8} \rfloor$
72 = $88 - 8 - 8$
73 = $\lfloor \sqrt{\sqrt8} \rfloor + 8 +8 \times 8$
74 = $\lfloor \sqrt8 \rfloor + 8 +8 \times 8$
75 = $\lceil \sqrt8 \rceil + 8 +8 \times 8$
76 = $\lceil \sqrt{88 \times 8 \times 8} \rceil$ - thanks to h34
77 = $88 - 8 - \lceil\sqrt8\rceil$
78 = $88 - 8 - \lfloor\sqrt8\rfloor$
79 = $\lceil\sqrt8\rceil^{\sqrt{8+8}} - \lfloor\sqrt8\rfloor$

80 = $8\times 8 + 8 + 8$
81 = $(\lfloor\sqrt8\rfloor + \lfloor\sqrt{\sqrt8}\rfloor)^{\sqrt{8+8}}$
82 = $88 - 8 + \lfloor\sqrt8\rfloor$
83 = $88 - 8 + \lceil\sqrt8\rceil$
84 = $88 - \sqrt{8+8}$
85 = $88 - \lceil\frac{8}{\sqrt8}\rceil$
86 = $88 - \lfloor\frac{8}{\sqrt8}\rfloor$
87 = $88 - \frac88$
88 = $88 - 8 + 8$
89 = $88 + \frac88$

90 = $88 + \lfloor\frac{8}{\sqrt8}\rfloor$
91 = $88 + \lceil\frac{8}{\sqrt8}\rceil$
92 = $88 + \sqrt{8+8}$
93 = $88 +8 - \lceil\sqrt8\rceil$
94 = $88 +8 - \lfloor\sqrt8\rfloor$
95 = $88 +8 - \lfloor\sqrt{\sqrt8}\rfloor$
96 = $8 \times \sqrt{8+8} \times \lceil \sqrt8 \rceil$
97 = $88 +8 + \lfloor\sqrt{\sqrt8}\rfloor$
98 = $88 +8 + \lfloor\sqrt8\rfloor$
99 = $88 +8 + \lceil\sqrt8\rceil$

100 = $(8 + \lfloor \sqrt8 \rfloor)^{\sqrt{\sqrt{8+8}}}$


Bonus:
If we allow log functions we can generate every number like this:


$x = \log_{\frac{\lfloor\sqrt{\sqrt8}\rfloor}{\lfloor\sqrt8\rfloor}}\left({\log_8\underbrace{\sqrt{\sqrt{\dots\sqrt{8\,}\,}\,}}_\text{x square roots}}\right)$


This is equivalent to


$x = \log_{\frac12}\left({\log_8{8^{\frac{1}{2^x}}}}\right)$


Going further:


$x = \log_{\frac12}\left({\frac{1}{2^x}}\right)$


Depending on he number of square roots, we can get any number.


And the snarky solution:



Turn one eight 90 degrees to get: $\infty$ and then $\frac{8-8}{8} \times \infty=0 \times \infty$ which can be equal to anything. (l know, I know, you will say it's undefined, but think... limits).


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...