I'd like to know whether, given a system, there's a way to obtain all the conserved quantities. For instance if the system consists of electric and magnetic fields, the fields must satisfy Maxwell's equations. These equations are invariant under many transformations (Lorentz transformation, rotations, spatial and temporal translations, etc. By the way is there a way, maybe from group theory, to find all the possible transformations that leaves the equation(s) invariant?) which imply as many conserved quantities thanks to Noether's theorem. In wikipedia I can see an equation that seems to give all the conserved quantities (wiki's article) but it involves the Lagrangian and I'm not sure whether the formula is valid for all systems whose Lagrangian is possible to obtain.
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form ψ=Ae−βr with $A = \frac{\bet...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
The gravitation formula says F=Gm1m2r2, so if the mass of a bob increases then the torque on it should also increase...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Small vessels generally lean into a turn, whereas big vessels lean out. Why do ships lean to the outside, but boats lean to the inside of a ...
No comments:
Post a Comment