Tuesday, 7 February 2017

electromagnetism - Are the Maxwell's equations enough to derive the law of Coulomb?


Are the 8 Maxwell's equations enough to derive the formula for the electromagnetic field created by a stationary point charge, which is the same as the law of Coulomb $$ F~=~k_e \frac{q_1q_2}{r^2}~? $$ If I am not mistaken, due to the fact that Maxwell's equations are differential equations, their general solution must contain arbitrary constants. Aren't some boundary conditions and initial conditions needed to have a unique solution. How is it possible to say without these conditions, that a stationary point charge does not generate magnetic field, and the electric scalar potential is equal to


$$\Phi(\mathbf{r})=\frac{e}{r}.$$


If the conditions are needed, what kind of conditions are they for the situation described above (the field of stationary point charge)?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...