Sunday, 12 February 2017

mathematical physics - In quantum mechanics, given certain energy spectrum can one generate the corresponding potential?


A typical problem in quantum mechanics is to calculate the spectrum that corresponds to a given potential.




  1. Is there a one to one correspondence between the potential and its spectrum?

  2. If the answer to the previous question is yes, then given the spectrum, is there a systematic way to calculate the corresponding potential?



Answer



In general, the answer is no. This type of inverse problem is sometimes referred to as: "Can one hear the shape of a drum". An extensive exposition by Beals and Greiner (Anal. Appl. 7, 131 (2009); eprint) discusses various problems of this type. Despite the fact that one can get a lot of geometrical and topological information from the spectrum or even its asymptotic behavior, this information is not complete even for systems as simple as quantum mechanics along a finite interval.


For additional details, see Apeiron 9 no. 3, 20 (2002), or also Phys. Rev. A 40, 6185 (1989), Phys. Rev. A 82, 022121 (2010), or Phys. Rev. A 55, 2580 (1997).


For a more experimental view, you can actually have particle-in-a-box problems with differently-shaped boxes in two dimensions that have the same spectra; this follows directly from the Gordon-Webb isospectral drums (Am. Sci. 84 no. 1, 46 (1996); jstor), and it was implemented by the Manoharan lab in Stanford (Science 319, 782 (2008); arXiv:0803.2328), to striking effect:



No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...