The Biot-Savart law can only be used in the case of magnetostatics (constant current) so how do we calculate the magnetic field of a single charge moving at constant velocity at a distance r. I tried by calculating the displacement current using but i was not sure wether the biot savart law can be applied to displacement currents. Please don't use relativity if possible because i have no experience with relativity yet.
Answer
A point charge q is moving uniformly on a straight line with velocity υ as is the Figure. The electromagnetic field at a point P with position vector x at time t is
ELW(x,t)=q4πϵ0(1−β2)(1−β2sin2ϕ)3/2r‖r‖3,β=υcBLW(x,t)=1c2(υ×E)ab=μ0q4π(1−β2)(1−β2sin2ϕ)3/2υ×r‖r‖3 Equations (01) are relativistic. They come from the Lienard-Wiechert potentials.
Biot-Savart Law
After a quick calculation with Biot-Savart Law (using the Dirac δ function) I found the solution BBS(x,t)=μ0q4πυ×r‖r‖3 which compared with that from the Lienard-Wiechert potentials, see above equation (01b) BLW(x,t)=μ0q4π(1−β2)(1−β2sin2ϕ)3/2υ×r‖r‖3 it looks as an approximation for charges whose velocities are small compared to that of light c BBS(x,t)=lim
(1) EDIT Answer to OP's comment :
how did you get equation 02 when v << c. – DHYEY Jun 29 '18 at 11:49
From Jackson's : Biot and Savart Law \begin{equation} \mathrm d\mathbf{B}=\dfrac{\mu_{0}}{4\pi}I\dfrac{\left(\mathrm d\boldsymbol{\ell}\boldsymbol{\times}\mathbf{r'}\right)}{\:\:\Vert\mathbf{r'}\Vert^{3}} \tag{BS-01} \end{equation} \begin{equation} I=q\upsilon\delta\left(x'-r\cos\phi\right), \qquad \mathrm d\boldsymbol{\ell}=\mathbf{i}\mathrm dx', \qquad \mathbf{r'}=x'\mathbf{i}\boldsymbol{+}\alpha\mathbf{j}\boldsymbol{+}0\mathbf{k} \tag{BS-02} \end{equation} \begin{equation} \mathrm d\mathbf{B}=\dfrac{\mu_{0}q}{4\pi}q\upsilon\delta\left(x'\!\boldsymbol{-}\!r\cos\phi\right)\dfrac{\left(\mathbf{i}\boldsymbol{\times}\mathbf{r'}\right)}{\:\:\Vert\mathbf{r'}\Vert^{3}}\mathrm dx'=\dfrac{\mu_{0}q}{4\pi}q\upsilon\delta\left(x'\!\boldsymbol{-}\!r\cos\phi\right)\dfrac{\left(\alpha\mathbf{k}\right)}{\:\:\left(x'^2\!\boldsymbol{+}\!\alpha^2 \right)^{3/2}}\mathrm dx' \tag{BS-03} \end{equation} \begin{equation} \mathbf{B}=\dfrac{\mu_{0}}{4\pi}q\upsilon\alpha\mathbf{k}\int\limits_{\boldsymbol{-}\boldsymbol{\infty}}^{\boldsymbol{+}\boldsymbol{\infty}}\dfrac{\delta\left(x'\!\boldsymbol{-}\!r\cos\phi\right)}{\:\:\left(x'^2\!\boldsymbol{+}\!\alpha^2 \right)^{3/2}}\mathrm dx'=\dfrac{\mu_{0}q}{4\pi}\dfrac{\upsilon\alpha\mathbf{k}}{\:\:\left(r^2\cos^2\phi\!\boldsymbol{+}\!\alpha^2 \right)^{3/2}}= \dfrac{\mu_{0}q}{4\pi}\dfrac{\left(\upsilon\mathbf{i}\right)\boldsymbol{\times}\left(\alpha\mathbf{j}\right)}{\:\:\left(r^2\cos^2\phi\!\boldsymbol{+}\!\alpha^2 \right)^{3/2}} \tag{BS-04} \end{equation} \begin{equation} \mathbf{B} =\dfrac{\mu_{0}q}{4\pi }\dfrac{\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{{r}}}{\:\:\Vert\mathbf{r}\Vert^{3}} \tag{BS-05} \end{equation}
No comments:
Post a Comment