Saturday, 1 July 2017

classical mechanics - What are holonomic and non-holonomic constraints?


I was reading Herbert Goldstein's Classical Mechanics. Its first chapter explains holonomic and non-holonomic constraints, but I still don’t understand the underlying concept. Can anyone explain it to me in detail and in simple language?



Answer



If you have a mechanical system with $N$ particles, you'd technically need $n = 3N$ coordinates to describe it completely.


But often it is possible to express one coordinate in terms of others: for example of two points are connected by a rigid rod, their relative distance does not vary. Such a condition of the system can be expressed as an equation that involves only the spatial coordinates $q_i$ of the system and the time $t$, but not on momenta $p_i$ or higher derivatives wrt time. These are called holonomic constraints: $$f(q_i, t) = 0.$$ The cool thing about them is that they reduce the degrees of freedom of the system. If you have $s$ constraints, you end up with $n' = 3N-s < n$ degrees of freedom.


An example of a holonomic constraint can be seen in a mathematical pendulum. The swinging point on the pendulum has two degrees of freedom ($x$ and $y$). The length $l$ of the pendulum is constant, so that we can write the constraint as $$x^2 + y^2 - l^2 = 0.$$ This is an equation that only depends on the coordinates. Furthermore, it does not explicitly depend on time, and is therefore also a scleronomous constraint. With this constraint, the number of degrees of freedom is now 1.




Non-holonomic constraints are basically just all other cases: when the constraints cannot be written as an equation between coordinates (but often as an inequality).


An example of a system with non-holonomic constraints is a particle trapped in a spherical shell. In three spatial dimensions, the particle then has 3 degrees of freedom. The constraint says that the distance of the particle from the center of the sphere is always less than $R$: $$\sqrt{x^2 + y^2 + z^2} < R.$$ We cannot rewrite this to an equality, so this is a non-holonomic, scleronomous constraint.


enter image description here



No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...