The key parameter which determines the abundances of light elements is the baryon/photon ratio. Is this ratio derived from first principles -if so, how- or, if it results from a small favoritism for matter over antimatter in the early universe, then from what observations is the baryon/photon ratio calculated -and how? Though the early universe is assumed to be dominated by radiation, how do we know this? Is it because we need this radiation to explain its evolution, i.e., the observed abundances? As far as I’m aware of, this radiation cannot be observed as the universe at that time was opaque.
Subscribe to:
Post Comments (Atom)
Understanding Stagnation point in pitot fluid
What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...
-
I have an hydrogenic atom, knowing that its ground-state wavefunction has the standard form $$ \psi = A e^{-\beta r} $$ with $A = \frac{\bet...
-
At room temperature, play-dough is solid(ish). But if you make a thin strip it cannot just stand up on it's own, so is it still solid? O...
-
This image from NASA illustrates drag coefficients for several shapes: It is generally accepted that some variation of the teardrop/airfoil...
-
Sometimes I am born in silence, Other times, no. I am unseen, But I make my presence known. In time, I fade without a trace. I harm no one, ...
-
Sorry if this question is a bit broad but I can't find any info on this by just searching. The equation q = neAL where L is the length o...
-
I want to know what happens to the space a black hole crosses over as our galaxy travels through space.
-
Literature states neutral pion decay by QED cannot occur directly because the pion is uncharged. However, I cannot see why Photons are not a...
No comments:
Post a Comment