Saturday, 1 December 2018

quantum mechanics - Lorentz force in Dirac theory and its classical limit


It is well known that in Dirac theory the time derivative of $P_i=p_i+A_i$ operator (where $p_i=∂/∂_i$, $A_i$ - EM field vector potential) is an analogue of the Lorentz force:



$\frac{dP_i}{dt} = e(E_i+[v×B]_i)$


On the other hand, in classical theory we have the same equation for $p_i$ instead of $P_i$. How comes that the effect of $A_i$ in Dirac theory vanishes in the classical limit?




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...