Saturday 16 March 2019

material science - Hollow Tube Stronger than Solid bar of same Outside Diameter (O.D.)?


I was listening to some co-workers talking about problems meeting stiffness requirements. Someone said that even with a solid metal rod (instead of the existing tube) we could not meet stiffness requirements.


I started daydreaming... and went back in time over a quarter of a century to some class I was taking in college. Things are hazy when you go back that far; but I am sure that someone with a Ph.D., or some other letters after his name, said that you could actually add stiffness to a solid rod by drilling out the center (and maybe by appropriately treating it, I forget). The reason, if I recall correctly, had to do with the added tensile strength of the inner surface. The reason I remember this from so long ago was that it was so counter-intuitive: I was stunned.


I'm not a stress/structures guy; so I asked a co-worker about it, and he said that the solid rod would be stiffer, because it had the greater (bending) moment of inertia. I agree with the latter part of the statement, but my hazy daydream keeps me from agreeing with the preceding conclusion. My money is still on a series of concentric tubes, appropriately processed and internally supported, being stiffer than a solid rod of the same O.D.


So, my question: Does anyone know of any references to this little structural trick (or engineering wives' tale). If so, can you quantify how much stiffness is gained?





No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...