Wednesday, 12 August 2020

quantum mechanics - von Neumann Entropy of a joint state


Definition 1 The von Neumann entropy of a density matrix is given by $$S(\rho) := - \mathrm{Tr}[\rho \ln \rho] = H[\lambda (\rho)] $$ where $H[\lambda (\rho)] $ is the Shannon entropy of the set of probabilities $\lambda (\rho) $ (which are eigenvalues of the density operator $\rho$).


Definition 2 If a system is prepared in the ensemble $\{ p_j, \rho_j \} $ then we define the Holevo $\chi$ quantity for the ensemble by $$\chi := S(\rho) - \sum_j p_j S(\rho_j) $$


Short Question : Let $A$ and $B$ be two quantum systems in a state of the form $$\rho^{(AB)} = \sum_i q_i |a_{i}^{(A)} \rangle \langle a_{i}^{(A)} | \otimes \rho_{i}^{(B)} $$ where the states $|a_{i}^{(A)} \rangle$ are orthogonal. What property of the von Neumann entropy implies that the von Neumann entropy of the joint state is $$S(\rho^{(AB)}) = H(\vec{q}) + \sum_i q_i S(\rho_{i}^{(B)})? $$


Proposal: I'm pretty sure it makes use of the following properties of von Neumann entropy: $$S(\rho_{A} \otimes \rho_{B}) = S(\rho_{A}) + S(\rho_{B})$$ and if $\rho_{A} = \sum_{x} p_x | \phi_x \rangle \langle \phi_x|$ then $$S(\rho_{A} \otimes \rho_{B}) = H(X) + S(\rho_{B})$$ where $X = \{| \phi_x \rangle, p_x \}$.


Thanks for any assistance.



Answer



$$ \rho^{(AB)} = \sum_i q_i |a_i^{(A)}\rangle \langle a_i^{(A)}| \otimes \rho_i^{(B)} \tag 1 $$ Note that subsystem $A$ and $B$ are separable, let $$ \rho^{(B)}_i = \sum_j \lambda^j_i |{b_i^j}^{(B)}\rangle \langle {b_i^j}^{(B)}|. \tag 2 $$ Substitute equation $(2)$ into $(1)$: $$ \eqalignno{ S(\rho^{(AB)}) &= -\sum_{ij} q_i \lambda_i^j \ln(q_i \lambda_i^j) \\ &= -\sum_{ij} q_i \lambda_i^j (\ln q_i + \ln \lambda_i^j) \\ &= -\sum_i q_i \ln q_i - \sum_i q_i \sum_j \lambda_i^j \ln \lambda_i^j \\ &= H(\vec q) + \sum_i q_i S(\rho_i^{(B)}). &(3) } $$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...