Definition 1 The von Neumann entropy of a density matrix is given by S(ρ):=−Tr[ρlnρ]=H[λ(ρ)]
where H[λ(ρ)] is the Shannon entropy of the set of probabilities λ(ρ) (which are eigenvalues of the density operator ρ).
Definition 2 If a system is prepared in the ensemble {pj,ρj} then we define the Holevo χ quantity for the ensemble by χ:=S(ρ)−∑jpjS(ρj)
Short Question : Let A and B be two quantum systems in a state of the form ρ(AB)=∑iqi|a(A)i⟩⟨a(A)i|⊗ρ(B)i
where the states |a(A)i⟩ are orthogonal. What property of the von Neumann entropy implies that the von Neumann entropy of the joint state is S(ρ(AB))=H(→q)+∑iqiS(ρ(B)i)?
Proposal: I'm pretty sure it makes use of the following properties of von Neumann entropy: S(ρA⊗ρB)=S(ρA)+S(ρB)
and if ρA=∑xpx|ϕx⟩⟨ϕx| then S(ρA⊗ρB)=H(X)+S(ρB)
where X={|ϕx⟩,px}.
Thanks for any assistance.
Answer
ρ(AB)=∑iqi|a(A)i⟩⟨a(A)i|⊗ρ(B)i
Note that subsystem A and B are separable, let ρ(B)i=∑jλji|bji(B)⟩⟨bji(B)|.
Substitute equation (2) into (1): S(ρ(AB))=−∑ijqiλjiln(qiλji)=−∑ijqiλji(lnqi+lnλji)=−∑iqilnqi−∑iqi∑jλjilnλji=H(→q)+∑iqiS(ρ(B)i).
No comments:
Post a Comment