If dark energy contributes mass-energy density $\rho$ and pressure $p$ to the stress-energy tensor, then you can define $w=p/\rho$, where $w=-1$ gives a cosmological constant, $w<-1$ gives a big rip, and $w<-1/3$ if we want to use dark energy to explain cosmological acceleration. The WP "Big Rip" article cites a paper that dates back to 2003 http://arxiv.org/abs/astro-ph/0302506 , which states that the empirical evidence was at that time only good enough to give $-2 \lesssim w \lesssim -.5$.
Have observations constrained $w$ any more tightly since 2003?
I've heard many people express the opinion that $w<-1$ is silly or poorly motivated, or that "no one believes it." What are the reasons for this? Other than mathematical simplicity, I don't know of any reason to prefer $w=-1$ over $w\ne -1$. Considering that attempts to calculate $\Lambda$ using QFT are off by 120 orders of magnitude, is it reasonable to depend on theory to give any input into what values of $w$ are believable?
No comments:
Post a Comment