Friday, 16 October 2020

homework and exercises - Prove that the position-space representation of a single particle wave function is given by $e^{i textbf{p}cdottextbf{x}}$


I'm trying to prove that the position-space representation of a single particle wave function of the state $|\textbf{p}⟩$ in Quantum Field theory is given by $e^{i \textbf{p}\cdot\textbf{x}}$


i.e. $⟨0|\phi(\textbf{x},t)|\textbf{p}⟩=e^{i \textbf{p}\cdot\textbf{x}}$, where $|\textbf{p}⟩=\sqrt{2E_{\textbf{p}}}a_{\textbf{p}}^\dagger |0⟩$ is the normalised single particle state.


Here is my attempt to prove it. $$ \begin{aligned} ⟨0|\phi(\textbf{x},t)|\textbf{p}⟩ &= ⟨0|\int\frac{d^3p^\prime}{(2\pi)^3}\frac{1}{\sqrt{2E_{\textbf{p}^{\prime}}}}\Big(a_{\textbf{p}^{\prime}}e^{i\textbf{p}^{\prime}\cdot\textbf{x}}+a_{\textbf{p}^{\prime}}^\dagger e^{-i\textbf{p}^{\prime}\cdot\textbf{x}}\Big)\sqrt{2E_{\textbf{p}}}a_{\textbf{p}}^\dagger|0⟩ \\ &= \int\frac{d^3p^\prime}{(2\pi)^3}\sqrt{\frac{E_{\textbf{p}}}{E_{\textbf{p}^{\prime}}}}\Big(⟨0|a_{\textbf{p}^{\prime}} a_{\textbf{p}}^\dagger |0⟩e^{i\textbf{p}^{\prime}\cdot\textbf{x}}+⟨0|a_{\textbf{p}^{\prime}}^\dagger a_{\textbf{p}}^\dagger|0⟩ e^{-i\textbf{p}^{\prime}\cdot\textbf{x}}\Big) \end{aligned} $$ Focusing on $⟨0|a_{\textbf{p}^{\prime}} a_{\textbf{p}}^\dagger |0⟩$ and $⟨0|a_{\textbf{p}^{\prime}}^\dagger a_{\textbf{p}}^\dagger|0⟩$, I get that the first term is equal to $$ ⟨0|a_{\textbf{p}^{\prime}} a_{\textbf{p}}^\dagger |0⟩=⟨\textbf{p}^\prime|\textbf{p}⟩=(2\pi)^3\delta^{(3)}(\textbf{p}^\prime-\textbf{p}) $$


For the second term I'm not as confident to what it should equal to? I'm trying to use the following trick and write $⟨0|a_{\textbf{p}^{\prime}}^\dagger a_{\textbf{p}}^\dagger|0⟩$ as $(a_{\textbf{p}^{\prime}}|0⟩)^\dagger a_{\textbf{p}}^\dagger|0⟩$ and use the fact that $a_{\textbf{p}^{\prime}}|0⟩=0$, but I don't know if this is the proper way to do it.


If $⟨0|a_{\textbf{p}^{\prime}}^\dagger a_{\textbf{p}}^\dagger|0⟩$ is zero I arrive at the desired result.


$$ \begin{aligned} ⟨0|\phi(\textbf{x},t)|\textbf{p}⟩ &= \int\frac{d^3p^\prime}{(2\pi)^3}\sqrt{\frac{E_{\textbf{p}}}{E_{\textbf{p}^{\prime}}}}(2\pi)^3\delta^{(3)}(\textbf{p}^\prime-\textbf{p})e^{i\textbf{p}^{\prime}\cdot\textbf{x}}\\ &=e^{i \textbf{p}\cdot\textbf{x}} \end{aligned} $$ Basically I need someone to confirm if my proof of $⟨0|a_{\textbf{p}^{\prime}}^\dagger a_{\textbf{p}}^\dagger|0⟩=0$ is correct or if there's any other property that makes $⟨0|a_{\textbf{p}^{\prime}}^\dagger a_{\textbf{p}}^\dagger|0⟩$ zero.




No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...