Tuesday, 3 November 2020

quantum mechanics - Deriving the optical Bloch equations from the von Neumann equations


Is it possible to derive the optical Bloch equations for a 2-level-system driven by an oscillating EM-Field from the von Neumann equation for the density operator?



I'm assuming a system consisting of the states $|g \rangle$ and $ e \rangle$. Those are eigenstates of the Hamiltonian $\hat{H}_0$ with energies $E_e$ and $E_g$. The whole hamiltonian should be a sum of $\hat{H}_0$ and $\hat{H}_E = \vec{r_z} E_0 \cos{\omega t}$. Because of the dipole operator, the diagonal matrix elements of $\hat{H}_E$ will disappear:


$$ \langle g | \hat{H}_E | g \rangle = \langle e | \hat{H}_E | e \rangle = 0 \\ $$ $$ \langle g | \hat{H}_E | e \rangle = \langle e | \hat{H}_E | g \rangle^* = \Omega_{Rabi} \hbar \cos{\omega t} \\ $$


Let's say i'm interested in the differential equation for the first density matrix element $\rho_gg$, and I know it's supposed to look like this (According to my professor): $$ \frac{d \rho_{gg}}{dt} = \frac i2 \Omega^*_{Rabi}e^{-i(\omega-\omega_0)t} \rho_{ge} - \frac i2 \Omega_{Rabi}e^{i(\omega-\omega_0)t} \rho_{eg} $$


However, if I try to derive this:


$$ \frac{d}{dt}\hat{\rho} = \frac{i}{\hbar} (\hat{\rho} (\hat{H}_0 + \hat{H}_E) - (\hat{H}_0 + \hat{H}_E)\hat{\rho}) \\ \frac{d}{dt} \rho_{gg} = \frac{i}{\hbar} \langle g |(\hat{\rho} (\hat{H}_0 + \hat{H}_E) - (\hat{H}_0 + \hat{H}_E)\hat{\rho})| g\rangle \\ = \frac{i}{\hbar} ( \langle g |\hat{\rho} \hat{H}_0| g\rangle + \langle g |\hat{\rho} \hat{H}_E| g\rangle - \langle g | \hat{H}_0 \hat{\rho}| g\rangle + \langle g | \hat{H}_E \hat{\rho}| g\rangle) \\ = \frac{i}{\hbar} (E_g \langle g |\hat{\rho}| g\rangle + \langle g |\hat{\rho} \hat{H}_E| g\rangle - E_g \langle g | \hat{\rho}| g\rangle + \langle g | \hat{H}_E \hat{\rho}| g\rangle) \\ = \frac{i}{\hbar} ( \langle g |\hat{\rho} \hat{H}_E| g\rangle - \langle g | \hat{H}_E \hat{\rho}| g\rangle) \\ = \frac{i}{\hbar} ( \langle g |\hat{\rho} |g \rangle \langle g | \hat{H}_E| g\rangle + \langle g |\hat{\rho} | e \rangle \langle e| \hat{H}_E| g\rangle - \langle g | \hat{H}_E |g \rangle \langle g | \hat{\rho}| g\rangle - \langle g | \hat{H}_E |e \rangle \langle e | \hat{\rho}| g\rangle) \\ = \frac{i}{\hbar} ( \rho_{ge} \Omega_{Rabi}^* \cos{\omega t} - \rho_{eg} \Omega_{Rabi} \cos{\omega t}) $$


So now here I stand and don't know wether I made a mistake, or wether it's not possible without additional assumptions. I don't know how possibly something like $e^{i\omega_0 t}$ should appear in this equation.



Answer



To arrive at the equations that my professor gave, I have to assume different states for $| e \rangle$ and $| g \rangle$. While I used the time independent, you can also use the same states multiplied by a phase-factor $| e \rangle =e^{-i\omega_g t}| e\rangle$ and $| g \rangle =g^{-i\omega_g t}| e\rangle$. Using them, the matrix elements of $\hat{H}_E$ are:


$$ \langle \tilde{g} | \hat{H}_E | \tilde{e} \rangle = \langle \tilde{e} | \hat{H}_E | \tilde{g} \rangle^* = \Omega_{Rabi} \hbar \cos{\omega t}e^{i \omega_0 t} \\ $$


With $\omega_0 = \omega_e - \omega_g$. The rotating wave approximation yields the desired result in the question:



$$ \frac{d \rho_{gg}}{dt} = \frac i2 \Omega^*_{Rabi}e^{-i(\omega-\omega_0)t} \rho_{eg} - \frac i2 \Omega_{Rabi}e^{i(\omega-\omega_0)t} \rho_{ge} $$


No comments:

Post a Comment

Understanding Stagnation point in pitot fluid

What is stagnation point in fluid mechanics. At the open end of the pitot tube the velocity of the fluid becomes zero.But that should result...